skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Increase Performance and Retention: Teach Students How To Study
Intervention in the form of changing one's teaching style is beneficial for boosting student grades and retention. However, in spite of the availability of multiple intervention approaches, a key hindrance is reliance on the belief that students know how to study. We dedicated time and resources to not only teach the discipline of Computer Science, but also to teach students how to study using techniques grounded in psychology. We offered a one-credit "booster" course to students taking CS 2: Data Structures. Through direct advisor intervention based on the first exam grade, students were encouraged to take the booster course along with traditional interventions. We then tracked student growth across exams for the course as students were learning and being held accountable to study techniques not often emphasized in Computer Science. The students continued to increase their grades throughout the semester relative to the students who chose to not take the booster class. The students who were targeted for intervention but did not take the booster course continued to have lower grades throughout the semester, and only 41% of them passed the course. Students who participated in the booster course showed a 31% rate of growth across the semester, taking a failing grade to a passing grade, with 100% passing the course with a C or above. These results show a significant influence to help students succeed, which led to higher retention and increased grades. If we want students to truly succeed, we must teach them to study.  more » « less
Award ID(s):
1931363
PAR ID:
10352317
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
SIGCSE 2022: Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
349 to 355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees. 
    more » « less
  2. null (Ed.)
    The AP Computer Science A course and exam continually exhibit inequity among over- and under-represented populations. This paper explored three years of AP CS A data in the Chicago Public School district (CPS) from 2016-2019 (N = 561). We analyzed the impact of teacher and student-level variables to determine the extent AP CS A course taking and exam passing differences existed between over- and under-represented populations. Our analyses suggest four prominent findings: (1) CPS, in collaboration with their Research-Practice Partnership (Chicago Alliance for Equity in Computer Science; CAFÉCS), is broadening participation for students taking the AP CS A course; (2) Over- and under- represented students took the AP CS A exam at statistically comparable rates, suggesting differential encouragement to take or not take the AP CS A exam was not prevalent among these demographics; (3) After adjusting for teacher and student-level prior experience, there were no significant differences among over- and under-represented racial categorizations in their likelihoods to pass the AP CS A exam, albeit Female students were 3.3 times less likely to pass the exam than Males overall; (4) Taking the Exploring Computer Science course before AP CS A predicted students being 3.5 times more likely to pass the AP CS A exam than students that did not take ECS before AP CS A. Implications are discussed around secondary computer science course sequencing and lines of inquiry to encourage even greater broadening of participation in the AP CS A course and passing of the AP CS A exam. 
    more » « less
  3. Computational thinking (CT) involves breaking a problem into smaller components and solving it using algorithmic thinking and abstraction. CT is no longer exclusively for computer scientists but for everyone. While CT does not necessarily require programming, learning programming to enhance CT skills at a young age can help shape the next generation of children with knowledge that can help them succeed in our technological world. In order to produce teachers who are able to incorporate programming and CT into their future classrooms, we created an introductory Computer Science course (CS0) targeting future K-8 STEM teachers yet open to any student to enroll and learn computer science. We used a mixed-methods approach, examining both quantitative and qualitative data based on self-reported surveys, classroom artifacts, and focus groups from four semesters of data. We found that after taking the course, students’ self-efficacy in CT increased and while education students initially had lower confidence in their computing abilities than computer science students in the course, by the end of the semester there were no differences in their perceived and actual coding abilities when compared with computer science students. Furthermore, education students had many ideas on how to incorporate similar projects into their own future classrooms. 
    more » « less
  4. McFarland, Jenny (Ed.)
    Many science, technology, engineering, and math (STEM) community college students do not complete their degree, and these students are more likely to be women or in historically excluded racial or ethnic groups. In introductory courses, low grades can trigger this exodus. Implementation of high-impact study strategies could lead to increased academic performance and retention. The examination of study strategies rarely occurs at the community college level, even though community colleges educate approximately half of all STEM students in the United States who earn a bachelor’s degree. To fill this research gap, we studied students in two biology courses at a Hispanic-serving community college. Students were asked their most commonly used study strategies at the start and end of the semester. They were given a presentation on study skills toward the beginning of the semester and asked to self-assess their study strategies for each exam. We observed a significantly higher course grade for students who reported spacing their studying and creating drawings when controlling for demographic factors, and usage of these strategies increased by the end of the semester. We conclude that high-impact study strategies can be taught to students in community college biology courses and result in higher course performance. 
    more » « less
  5. Abstract: First-year students who enter college pursuing a STEM degree still face challenges persisting through the STEM pipeline (Chen, 2013; Leu, 2017). In this case study, esearchers examine the impact of a utilitarian scientific literacy based academic intervention on retention of first-year students in STEM using a mixed methods approach. A sample (n = 116) of first-year students identified as at-risk of not persisting in STEM were enrolled in a for credit utilitarian scientific literacy course. Participants of the semester long course were then compared with a control group of first-year students identified as at-risk of persisting in STEM. A two-proportion z test was performed to assess the mean differences between students and participants of the course were given a survey to gauge student experiences. Quantitative results (ϕ 0.34, p < 0.05) indicate that the utilitarian scientific literacy course had a statistically significant impact on retention among first-year students at-risk of persisting in STEM. Moreover, qualitative data obtained from participant responses describe internal and external growth as positive outcomes associated with the intervention. 
    more » « less