ABSTRACT Fine-structure transitions can be involved in various processes including photon absorption, charge transfer, and inelastic collisions between ions, electrons, and neutral atoms. We present fine-structure excitation and relaxation cross-sections for the collisions of the first few members of the carbon isoelectronic sequence (C, N+ and O2 +) with atomic hydrogen calculated using quantum-mechanical methods. For C, the scattering theory and computational approach is verified by comparison with previous calculations. The rate coefficients for the collisional processes are obtained. For N+ and O2 +, the transitions correspond to the lines [O iii] 52 μm, [O iii] 88 μm, [N ii] 122 μm, and [N ii] 205 μm, observed in the far-infrared in the local universe and more recently in high-redshift galaxies using radio interferometry. The influence of different potentials on the cross-sections and rate coefficients are demonstrated.
more »
« less
Model of charge transfer collisions between C 60 and slow ions
A semiclassical model describing the charge transfer collisions of C 60 fullerene with different slow ions has been developed to analyze available observations. These data reveal multiple Breit–Wigner-like peaks in the cross sections, with subsequent peaks of reactive cross sections decreasing in magnitude. Calculations of charge transfer probabilities, quasi-resonant cross sections, and cross sections for reactive collisions have been performed using semiempirical interaction potentials between fullerenes and ion projectiles. All computations have been carried out with realistic wave functions for C 60 ’s valence electrons derived from the simplified jellium model. The quality of these electron wave functions has been successfully verified by comparing theoretical calculations and experimental data on the small angle cross sections of resonant [Formula: see text] collisions. Using the semiempirical potentials to describe resonant scattering phenomena in C 60 collisions with ions and Landau–Zener charge transfer theory, we calculated theoretical cross sections for various C 60 charge transfer and fragmentation reactions which agree with experiments.
more »
« less
- PAR ID:
- 10352431
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 157
- Issue:
- 5
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 054303
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′ states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction.more » « less
-
Aims. We present new calculations of collision cross sections for state-to-state transitions between the rotational states in an H 2 O + H 2 O system, which are used to generate a new database of collisional rate coefficients for cometary and planetary applications. Methods. Calculations were carried out using a mixed quantum-classical theory approach that is implemented in the code MQCT. The large basis set of rotational states used in these calculations permits us to predict thermally averaged cross sections for 441 transitions in para- and ortho-H 2 O in a broad range of temperatures. Results. It is found that all state-to-state transitions in the H 2 O + H 2 O system split into two well-defined groups, one with higher cross-section values and lower energy transfer, which corresponds to the dipole-dipole driven processes. The other group has smaller cross sections and higher energy transfer, driven by higher-order interaction terms. We present a detailed analysis of the theoretical error bars, and we symmetrized the state-to-state transition matrixes to ensure that excitation and quenching processes for each transition satisfy the principle of microscopic reversibility. We also compare our results with other data available from the literature for H 2 O + H 2 O collisions.more » « less
-
null (Ed.)Radiative double-electron capture (RDEC), in which two-electron capture is accompanied by simultaneousemission of a single photon, was investigated for fully stripped and one-electron projectiles colliding withgaseous and thin-foil targets. RDEC can be considered the inverse of double photoionization by a single photon.For the gaseous targets, measurements were done for 2.11 MeV/uF9+and F8+ions interacting with N2and Ne,while for the thin-foil target the measurements were done for 2.11 MeV/uF9+and F8+and 2.19 MeV/uO8+andO7+ions striking thin C targets. Reports on this work were already published separately in shorter accounts by LaMantiaet al.[Phys. Rev. Lett.124, 133401 (2020)for the gas targets andPhys.Rev.A102, 060801(R) (2020)forthe thin-foil targets]. The gas targets were studied under single-collision conditions, while the foil targets sufferedunavoidable multiple collisions. The measurements were carried out by detecting x-ray emission from the targetat 90◦to the beam direction in coincidence with outgoing ions undergoing double, single, and, in the caseof the foil targets, no charge change inside the target. Striking differences between the gaseous and foil targetswere found from these measurements, with RDEC for the gaseous targets occurring only in coincidence with q-2outgoing projectiles as expected, while RDEC for the foil targets was seen in each of the outgoing q-2, q-1, and nocharge-change states. The no charge-change result was totally unexpected. The cross sections for RDEC for thefully stripped ions on gas targets were found to be about six times larger than those for the one-electron projec-tiles. For the foil targets, the RDEC cross sections for the fully stripped and one-electron projectiles differ some-what from one another but not to the the extent they did for the gas targets. In this work the cross sections for allof the projectiles for the foil targets were adjusted due to the target contaminant background from potassium andcalcium atoms that existed in the spectra. Also, the cross sections for the incident one-electron projectiles weremodified due to a correction for the fraction of these ions that becomes fully stripped in passage through the foil.These differences are attributed to the effects of the multiple collisions that occur for the foil targets. The differ-ential cross sections at 90◦determined for each of the projectiles interacting with each of the targets are comparedwith each other and with the previous measurements. To the extent that the cross sections follow a sin2θdepen-dence, the total cross sections are compared with theoretical calculations [E. A. Mistonova and O. Yu. Andreev,Phys. Rev. A87, 034702 (2013)], for which the agreement is poor, with the measured cross section exceedingthe predicted ones by about an order of magnitude. Possible reasons for this discrepancy will be discussed.more » « less
-
Light induced charge separation in a newly synthesized triphenylamine–thiophene-Sc 3 N@ I h -C 80 donor–acceptor conjugate and its C 60 analog, triphenylamine–thiophene-C 60 conjugate is reported, and the significance of the thiophene spacer in promoting electron transfer events is unraveled.more » « less
An official website of the United States government

