skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anaerobic Microbial Metabolism of Dichloroacetate
ABSTRACT Dichloroacetate (DCA) commonly occurs in the environment due to natural production and anthropogenic releases, but its fate under anoxic conditions is uncertain. Mixed culture RM comprising “ Candidatus Dichloromethanomonas elyunquensis” strain RM utilizes DCA as an energy source, and the transient formation of formate, H 2 , and carbon monoxide (CO) was observed during growth. Only about half of the DCA was recovered as acetate, suggesting a fermentative catabolic route rather than a reductive dechlorination pathway. Sequencing of 16S rRNA gene amplicons and 16S rRNA gene-targeted quantitative real-time PCR (qPCR) implicated “ Candidatus Dichloromethanomonas elyunquensis” strain RM in DCA degradation. An ( S )-2-haloacid dehalogenase (HAD) encoded on the genome of strain RM was heterologously expressed, and the purified HAD demonstrated the cofactor-independent stoichiometric conversion of DCA to glyoxylate at a rate of 90 ± 4.6 nkat mg −1 protein. Differential protein expression analysis identified enzymes catalyzing the conversion of DCA to acetyl coenzyme A (acetyl-CoA) via glyoxylate as well as enzymes of the Wood-Ljungdahl pathway. Glyoxylate carboligase, which catalyzes the condensation of two molecules of glyoxylate to form tartronate semialdehyde, was highly abundant in DCA-grown cells. The physiological, biochemical, and proteogenomic data demonstrate the involvement of an HAD and the Wood-Ljungdahl pathway in the anaerobic fermentation of DCA, which has implications for DCA turnover in natural and engineered environments, as well as the metabolism of the cancer drug DCA by gut microbiota. IMPORTANCE Dichloroacetate (DCA) is ubiquitous in the environment due to natural formation via biological and abiotic chlorination processes and the turnover of chlorinated organic materials (e.g., humic substances). Additional sources include DCA usage as a chemical feedstock and cancer drug and its unintentional formation during drinking water disinfection by chlorination. Despite the ubiquitous presence of DCA, its fate under anoxic conditions has remained obscure. We discovered an anaerobic bacterium capable of metabolizing DCA, identified the enzyme responsible for DCA dehalogenation, and elucidated a novel DCA fermentation pathway. The findings have implications for the turnover of DCA and the carbon and electron flow in electron acceptor-depleted environments and the human gastrointestinal tract.  more » « less
Award ID(s):
1831599
PAR ID:
10352594
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Lovley, Derek R.
Date Published:
Journal Name:
mBio
Volume:
12
Issue:
2
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Candidatus Poribacteria is a little-known bacterial phylum, previously characterized by partial genomes from a single sponge host, but never isolated in culture. We have reconstructed multiple genome sequences from four different sponge genera and compared them to recently reported, uncharacterized Poribacteria genomes from the open ocean, discovering shared and unique functional characteristics. Two distinct, habitat-linked taxonomic lineages were identified, designated Entoporibacteria (sponge-associated) and Pelagiporibacteria (free-living). These lineages differed in flagellar motility and chemotaxis genes unique to Pelagiporibacteria, and highly expanded families of restriction endonucleases, DNA methylases, transposases, CRISPR repeats, and toxin–antitoxin gene pairs in Entoporibacteria. Both lineages shared pathways for facultative anaerobic metabolism, denitrification, fermentation, organosulfur compound utilization, type IV pili, cellulosomes, and bacterial proteosomes. Unexpectedly, many features characteristic of eukaryotic host association were also shared, including genes encoding the synthesis of eukaryotic-like cell adhesion molecules, extracellular matrix digestive enzymes, phosphoinositol-linked membrane glycolipids, and exopolysaccharide capsules. Complete Poribacteria 16S rRNA gene sequences were found to contain multiple mismatches to “universal” 16S rRNA gene primer sets, substantiating concerns about potential amplification failures in previous studies. A newly designed primer set corrects these mismatches, enabling more accurate assessment of Poribacteria abundance in diverse marine habitats where it may have previously been overlooked. 
    more » « less
  2. ABSTRACT Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi . Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales ) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous ( rdhA ) gene. IMPORTANCE Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi . These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales ) were recovered from a hydrothermally driven system and therefore provide a unique window into the metabolic potential of this type of habitat. In addition, a reductive dehalogenase gene ( rdhA ) has been directly linked to marine subsurface Chloroflexi , suggesting that reductive dehalogenation is not limited to the class Dehalococcoidia . This discovery expands the nutrient-cycling and metabolic potential present within the deep subsurface and provides functional gene information relating to this enigmatic group. 
    more » « less
  3. Glass, Jennifer B (Ed.)
    ABSTRACT Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of thePlanctomycetes-Verrucomicrobia-Chlamydia(PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2Tfrom microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2Trepresents a novel species within thePontiellagenus in theKiritimatiellotaphylum (within the PVC superphylum). Strain NLcol2Tis able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and ɩ-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T(= DSM 113125T= MCCC 1K08672T) is proposed to be the type strain of a novel species in thePontiellagenus, and the namePontiella agarivoranssp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of theKiritimatiellotaphylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2Texpands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal. 
    more » « less
  4. Summary We report on the genomic characterization of three novel classes in the phylum Desulfobacterota. One class (proposed nameCandidatus‘Anaeroferrophillalia’) was characterized by heterotrophic growth capacity, either fermentatively or utilizing polysulfide, tetrathionate or thiosulfate as electron acceptors. In the absence of organic carbon sources, autotrophic growth via the Wood–Ljungdahl (WL) pathway and using hydrogen or Fe(II) as an electron donor is also inferred for members of the ‘Anaeroferrophillalia’. The second class (proposed nameCandidatus‘Anaeropigmentia’) was characterized by its capacity for growth at low oxygen concentration, and the capacity to synthesize the methyl/alkyl carrier CoM, an ability that is prevalent in the archaeal but rare in the bacterial domain. Pigmentation is inferred from the capacity for carotenoid (lycopene) production. The third class (proposed nameCandidatus‘Zymogenia’) was characterized by fermentative heterotrophic growth capacity, broad substrate range and the adaptation of some of its members to hypersaline habitats. Analysis of the distribution pattern of all three classes showed their occurrence as rare community members in multiple habitats, with preferences for anaerobic terrestrial, freshwater and marine environments over oxygenated (e.g. pelagic ocean and agricultural land) settings. Special preference for some members of the classCandidatus‘Zymogenia’ for hypersaline environments such as hypersaline microbial mats and lagoons was observed. 
    more » « less
  5. Proteins are an abundant biopolymer in organic waste feedstocks for biorefining. When degraded, amino acids are released, but their fate in non-methanogenic microbiomes is not well understood. The ability of a microbiome obtained from an anaerobic digester to produce volatile fatty acids from the twenty proteinogenic amino acids was tested using batch experiments. Batch tests were conducted using an initial concentration of each amino acid of 9000 mg COD L−1 along with 9000 mg COD L−1 acetate. Butyrate production was observed from lysine, glutamate, and serine fermentation. Lesser amounts of propionate, iso-butyrate, and iso-valerate were also observed from individual amino acids. Based on 16S rRNA gene amplicon sequencing, Anaerostignum, Intestimonas, Aminipila, and Oscillibacter all likely play a role in the conversion of amino acids to butyrate. The specific roles of other abundant taxa, including Coprothermobacter, Fervidobacterium, Desulfovibrio, and Wolinella, remain unknown, but these genera should be studied for their role in fermentation of amino acids and proteins to VFAs. 
    more » « less