skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Black Hole Mass Measurements of Early-type Galaxies NGC 1380 and NGC 6861 through ALMA and HST Observations and Gas-dynamical Modeling*
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of CO(2–1) emission from the circumnuclear disks in two early-type galaxies, NGC 1380 and NGC 6861. The disk in each galaxy is highly inclined ( i ∼ 75°), and the projected velocities of the molecular gas near the galaxy centers are ∼300 km s −1 in NGC 1380 and ∼500 km s −1 in NGC 6861. We fit thin disk dynamical models to the ALMA data cubes to constrain the masses of the central black holes (BHs). We created host galaxy models using Hubble Space Telescope images for the extended stellar mass distributions and incorporated a range of plausible central dust extinction values. For NGC 1380, our best-fit model yields M BH = 1.47 × 10 8 M ⊙ with a ∼40% uncertainty. For NGC 6861, the lack of dynamical tracers within the BH’s sphere of influence due to a central hole in the gas distribution precludes a precise measurement of M BH . However, our model fits require a value for M BH in the range of (1–3) × 10 9 M ⊙ in NGC 6861 to reproduce the observations. The BH masses are generally consistent with predictions from local BH–host galaxy scaling relations. Systematic uncertainties associated with dust extinction of the host galaxy light and choice of host galaxy mass model dominate the error budget of both measurements. Despite these limitations, the measurements demonstrate ALMA’s ability to provide constraints on BH masses in cases where the BH’s projected radius of influence is marginally resolved or the gas distribution has a central hole.  more » « less
Award ID(s):
1814799 1614212
PAR ID:
10352833
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
934
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present 0.22" resolution CO(2–1) observations of the circumnuclear gas disk in the local compact galaxy NGC 384 with the Atacama Large Millimeter/submillimeter Array (ALMA). While the majority of the disk displays regular rotation with projected velocities rising to 370 km/s, the inner ~0.5" exhibits a kinematic twist. We develop warped disk gas-dynamical models to account for this twist, fit those models to the ALMA data cube, and find a stellar mass-to-light ratio in the H-band of M/L_H = 1.34 ± 0.01 [1σ statistical] ±0.02 [systematic] M⊙/L⊙ and a supermassive black hole (BH) mass (M_BH) of M_BH = (7.26_{−0.48}^{+0.43} [1σ statistical]_{-1.00}^{+0.55} [systematic]x10^8 M⊙. In contrast to most previous dynamical M_BH measurements in local compact galaxies, which typically found over-massive BHs compared to the local BH mass−bulge luminosity and BH mass−bulge mass relations, NGC 384 lies within the scatter of those scaling relations. NGC 384 and other local compact galaxies are likely relics of z~2 red nuggets, and over-massive BHs in these relics indicate BH growth may conclude before the host galaxy stars have finished assembly. Our NGC 384 results may challenge this evolutionary picture, suggesting there may be increased scatter in the scaling relations than previously thought. However, this scatter could be inflated by systematic differences between stellar- and gas-dynamical measurement methods, motivating direct comparisons between the methods for NGC 384 and the other compact galaxies in the sample. 
    more » « less
  2. We present 0.″22-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2−1) emission from the circumnuclear gas disk in the red nugget relic galaxy PGC 11179. The disk shows regular rotation, with projected velocities near the center of 400 km/s. We assume the CO emission originates from a dynamically cold, thin disk and fit gas-dynamical models directly to the ALMA data. In addition, we explore systematic uncertainties by testing the impacts of various model assumptions on our results. The supermassive black hole (BH) mass (M_BH) is measured to be M_BH = (1.91 ± 0.04 [1σ statistical] _-0.51^+0.11 [systematic]) × 10^9 M⊙, and the H-band stellar mass-to-light ratio M/L_H = 1.620 ± 0.004 [1σ statistical]_−0.107^+0.211 [systematic] M⊙/L⊙. This M_BH is consistent with the BH mass−stellar velocity dispersion relation but over-massive compared to the BH mass−bulge luminosity relation by a factor of 3.7. PGC 11179 is part of a sample of local compact early-type galaxies that are plausible relics of z ∼ 2 red nuggets, and its behavior relative to the scaling relations echoes that of three relic galaxy BHs previously measured with stellar dynamics. These over-massive BHs could suggest that BHs gain most of their mass before their host galaxies do. However, our results could also be explained by greater intrinsic scatter at the high-mass end of the scaling relations, or by systematic differences in gas- and stellar-dynamical methods. Additional M_BH measurements in the sample, including independent cross-checks between molecular gas- and stellar-dynamical methods, will advance our understanding of the co-evolution of BHs and their host galaxies. 
    more » « less
  3. Abstract We present the ALMA detection of molecular outflowing gas in the central regions of NGC 4945, one of the nearest starbursts and also one of the nearest hosts of an active galactic nucleus (AGN). We detect four outflow plumes in CO J = 3 − 2 at ∼0.″3 resolution that appear to correspond to molecular gas located near the edges of the known ionized outflow cone and its (unobserved) counterpart behind the disk. The fastest and brightest of these plumes has emission reaching observed line-of-sight projected velocities of over 450 km s −1 beyond systemic, equivalent to an estimated physical outflow velocity v ≳ 600 km s −1 for the fastest emission. Most of these plumes have corresponding emission in HCN or HCO + J = 4 − 3. We discuss a kinematic model for the outflow emission where the molecular gas has the geometry of the ionized gas cone and shares the rotation velocity of the galaxy when ejected. We use this model to explain the velocities we observe, constrain the physical speed of the ejected material, and account for the fraction of outflowing gas that is not detected due to confusion with the galaxy disk. We estimate a total molecular mass outflow rate M ̇ mol ∼ 20 M ⊙ yr −1 flowing through a surface within 100 pc of the disk midplane, likely driven by a combination of the central starburst and AGN. 
    more » « less
  4. ABSTRACT We estimate the mass of the intermediate-mass black hole at the heart of the dwarf elliptical galaxy NGC 404 using Atacama Large Millimetre/submillimetre Array (ALMA) observations of the molecular interstellar medium at an unprecedented linear resolution of ≈0.5 pc, in combination with existing stellar kinematic information. These ALMA observations reveal a central disc/torus of molecular gas clearly rotating around the black hole. This disc is surrounded by a morphologically and kinematically complex flocculent distribution of molecular clouds, that we resolve in detail. Continuum emission is detected from the central parts of NGC 404, likely arising from the Rayleigh–Jeans tail of emission from dust around the nucleus, and potentially from dusty massive star-forming clumps at discrete locations in the disc. Several dynamical measurements of the black hole mass in this system have been made in the past, but they do not agree. We show here that both the observed molecular gas and stellar kinematics independently require a ≈5 × 105 M⊙ black hole once we include the contribution of the molecular gas to the potential. Our best estimate comes from the high-resolution molecular gas kinematics, suggesting the black hole mass of this system is 5.5$$^{+4.1}_{-3.8}\times 10^5$$ M⊙ (at the 99 per cent confidence level), in good agreement with our revised stellar kinematic measurement and broadly consistent with extrapolations from the black hole mass–velocity dispersion and black hole mass–bulge mass relations. This highlights the need to accurately determine the mass and distribution of each dynamically important component around intermediate-mass black holes when attempting to estimate their masses. 
    more » « less
  5. Abstract We present a reanalysis of reverberation mapping data from 2005 for the Seyfert galaxy NGC 4151, supplemented with additional data from the literature to constrain the continuum variations over a significantly longer baseline than the original monitoring program. Modeling of the continuum light curve and the velocity-resolved variations across the H β emission line constrains the geometry and kinematics of the broad line region (BLR). The BLR is well described by a very thick disk with similar opening angle ( θ o ≈ 57°) and inclination angle ( θ i ≈ 58°), suggesting that our sight line toward the innermost central engine skims just above the surface of the BLR. The inclination is consistent with constraints from geometric modeling of the narrow-line region, and the similarity between the inclination and opening angles is intriguing given previous studies of NGC 4151 that suggest BLR gas has been observed temporarily eclipsing the X-ray source. The BLR kinematics are dominated by eccentric bound orbits, with ∼10% of the orbits preferring near-circular motions. With the BLR geometry and kinematics constrained, the models provide an independent and direct black hole mass measurement of log M BH / M ⊙ = 7.22 − 0.10 + 0.11 or M BH = 1.66 − 0.34 + 0.48 × 10 7 M ⊙ , which is in good agreement with mass measurements from stellar dynamical modeling and gas dynamical modeling. NGC 4151 is one of the few nearby broad-lined Seyferts where the black hole mass may be measured via multiple independent techniques, and it provides an important test case for investigating potential systematics that could affect the black hole mass scales used in the local universe and for high-redshift quasars. 
    more » « less