skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Private-K-Selection with Adaptive K and Application to Multi-label PATE
We provide an end-to-end Renyi DP based-framework for differentially private top-๐‘˜ selection. Unlike previous approaches, which require a data-independent choice on ๐‘˜, we propose to privately release a data-dependent choice of ๐‘˜ such that the gap between ๐‘˜-th and the (๐‘˜+1)st โ€œqualityโ€ is large. This is achieved by an extension of the Report-Noisy-Max algorithm with a more concentrated Gaussian noise. Not only does this eliminates one hyperparameter, the adaptive choice of ๐‘˜ also certifies the stability of the top-๐‘˜ indices in the unordered set so we can release them using a combination of the propose-test-release (PTR) framework and the Distance-to-Stability mechanism. We show that our construction improves the privacy-utility trade-offs compared to the previous top-๐‘˜ selection algorithms theoretically and empirically. Additionally, we apply our algorithm to โ€œPrivate Aggregation of Teacher Ensembles (PATE)โ€ in multi-label classification tasks with a large number of labels and show that it leads to significant performance gains.  more » « less
Award ID(s):
2048091
PAR ID:
10352846
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
151
ISSN:
2640-3498
Page Range / eLocation ID:
5622--5635
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The performance of private gradient-based optimization algorithms is highly dependent on the choice of step size (or learning rate) which often requires non-trivial amount of tuning. In this paper, we introduce a stochastic variant of classic backtracking line search algorithm that satisfies Renyi differential privacy. Specifically, the proposed algorithm adaptively chooses the step size satisfying the the Armijo condition (with high probability) using noisy gradients and function estimates. Furthermore, to improve the probability with which the chosen step size satisfies the condition, it adjusts per-iteration privacy budget during runtime according to the reliability of noisy gradient. A naive implementation of the backtracking search algorithm may end up using unacceptably large privacy budget as the ability of adaptive step size selection comes at the cost of extra function evaluations. The proposed algorithm avoids this problem by using the sparse vector technique combined with the recent privacy amplification lemma. We also introduce a privacy budget adaptation strategy in which the algorithm adaptively increases the budget when it detects that directions pointed by consecutive gradients are drastically different. Extensive experiments on both convex and non-convex problems show that the adaptively chosen step sizes allow the proposed algorithm to efficiently use the privacy budget and show competitive performance against existing private optimizers. 
    more » « less
  2. The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis. 
    more » « less
  3. Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other. However, data locality does not provide sufficient privacy protection, and it is desirable to facilitate FL with rigorous differential privacy (DP) guarantee. Existing DP mechanisms would introduce random noise with magnitude proportional to the model size, which can be quite large in deep neural networks. In this paper, we propose a new FL framework with sparsification-amplified privacy. Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee. Since sparsification would increase the number of communication rounds required to achieve a certain target accuracy, which is unfavorable for DP guarantee, we further introduce acceleration techniques to help reduce the privacy cost. We rigorously analyze the convergence of our approach and utilize Renyi DP to tightly account the end-to-end DP guarantee. Extensive experiments on benchmark datasets validate that our approach outperforms previous differentially-private FL approaches in both privacy guarantee and communication efficiency. 
    more » « less
  4. Federated learning is a distributed optimization paradigm that enables a large number of resource-limited client nodes to cooperatively train a model without data sharing. Previous works analyzed the convergence of federated learning by accounting for data heterogeneity, communication/computation limitations, and partial client participation. However, most assume unbiased client participation, where clients are selected such that the aggregated model update is unbiased. In our work, we present the convergence analysis of federated learning with biased client selection and quantify how the bias affects convergence speed. We show that biasing client selection towards clients with higher local loss yields faster error convergence. From this insight, we propose Power-of-Choice, a communication- and computation-efficient client selection framework that flexibly spans the trade-off between convergence speed and solution bias. Extensive experiments demonstrate that Power-of-Choice can converge up to 3 times faster and give 10% higher test accuracy than the baseline random selection. 
    more » « less
  5. For datasets exhibiting long tail phenomenon, we identify a fairness concern in existing top-k algorithms, that return a fixed set of k results for a given query. This causes a handful of popular records (products, items, etc) getting overexposed and always be returned to the user query, whereas, there exists a long tail of niche records that may be equally desirable (have similar utility). To alleviate this, we propose ฮธ-Equiv-top-k-MMSP inside existing top-k algorithms - instead of returning a fixed top-k set, it generates all (or many) top-k sets that are equivalent in utility and creates a probability distribution over those sets. The end user will be returned one of these sets during the query time proportional to its associated probability, such that, after many draws from many end users, each record will have as equal exposure as possible (governed by uniform selection probability). ฮธ-Equiv-top-k-MMSP is formalized with two sub-problems. (a) ฮธ-Equiv-top-k-Sets to produce a set S of sets, each set has k records, where the sets are equivalent in utility with the top-k set; (b) MaxMinFair to produce a probability distribution over S, that is, PDF(S), such that the records in S have uniform selection probability. We formally study the hardness of ฮธ-Equiv-top-k-MMSP. We present multiple algorithmic results - (a) An exact solution for ฮธ-Equiv-top-k-Sets, and MaxMinFair. (b) We design highly scalable algorithms that solve ฮธ-Equiv-top-k-Sets through a random walk and is backed by probability theory, as well as a greedy solution designed for MaxMinFair. (c) We finally present an adaptive random walk based algorithm that solves ฮธ-Equiv-top-k-Sets and MaxMinFair at the same time. We empirically study how ฮธ-Equiv-top-k-MMSP can alleviate a equitable exposure concerns that group fairness suffers from. We run extensive experiments using 6 datasets and design intuitive baseline algorithms that corroborate our theoretical analysis. 
    more » « less