skip to main content


Title: Effects of trimethylaluminum vapor pressure and exposure time on inorganic loading in vapor phase infiltrated PIM-1 polymer membranes
Award ID(s):
1921873
NSF-PAR ID:
10353062
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Materials Chemistry and Physics
Volume:
290
Issue:
C
ISSN:
0254-0584
Page Range / eLocation ID:
126577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transition metal dichalcogenides (TMDs) are known for their layered structure and tunable functional properties. However, a unified understanding on other transition metal chalcogenides (i.e. M 2 X) is still lacking. Here, the relatively new class of copper-based chalcogenides Cu 2 X (X = Te, Se, S) is thoroughly reported. Cu 2 X are synthesized by an unusual vapor–liquid assisted growth on a Al 2 O 3 /Cu/W stack. Liquid copper plays a significant role in synthesizing these layered systems, and sapphire assists with lateral growth and exfoliation. Similar to traditional TMDs, thickness dependent phonon signatures are observed, and high-resolution atomic images reveal the single phase Cu 2 Te that prefers to grow in lattice-matched layers. Charge transport measurements indicate a metallic nature at room temperature with a transition to a semiconducting nature at low temperatures accompanied by a phase transition, in agreement with band structure calculations. These findings establish a fundamental understanding and thrust Cu 2 Te as a flexible candidate for wide applications from photovoltaics and sensors to nanoelectronics. 
    more » « less
  2. Selective deposition of hybrid and inorganic materials inside nanostructures could enable major nanotechnological advances. However, inserting ready-made composites inside nanocavities may be difficult, and therefore, stepwise approaches are needed. In this paper, a poly(ethyl acrylate) template is grown selectively inside cavities via condensation-controlled toposelective vapor deposition, and the polymer is then hybridized by alumina, titania, or zinc oxide. The hybridization is carried out by infiltrating the polymer with a vapor-phase metalorganic precursor and water vapor either via a short-pulse (atomic layer deposition, ALD) or a long-pulse (vapor phase infiltration, VPI) sequence. When the polymer-MO x hybrid material is calcined at 450 °C in air, an inorganic phase is left as the residue. Various suspected confinement effects are discussed. The infiltration of inorganic materials is reduced in deeper layers of the cavity-grown polymer and is dependent on the cavity geometry. The structure of the inorganic deposition after calcination varies from scattered particles and their aggregates to cavity-capping films or cavity-filling low-density porous deposition, and the inorganic deposition is often anisotropically cracked. A large part of the infiltration is achieved already during the short-pulse experiments with a commercial ALD reactor. Furthermore, the infiltrated polymer is more resistant to dissolution in acetone whereas the inorganic component can still be heavily affected by phosphoric acid. 
    more » « less