Abstract. The penultimate deglaciation (PDG, ∼138–128 thousand years before present, hereafter ka) is the transition fromthe penultimate glacial maximum (PGM)to the Last Interglacial (LIG, ∼129–116 ka).The LIG stands out as one of the warmest interglacials of the last 800 000 years (hereafter kyr),with high-latitude temperature warmer than today and global sea level likely higher by at least 6 m.Considering the transient nature of the Earth system,the LIG climate and ice-sheet evolution were certainly influenced by the changesoccurring during the penultimate deglaciation.It is thus importantto investigate, with coupled atmosphere–ocean general circulation models (AOGCMs),the climate and environmental response to the large changesin boundary conditions(i.e. orbital configuration, atmospheric greenhouse gas concentrations, ice-sheet geometry and associated meltwater fluxes) occurring during the penultimate deglaciation. A deglaciation working group has recently been set up as part of the Paleoclimate Modelling Intercomparison Project (PMIP) phase 4, with a protocolto perform transient simulations of the last deglaciation (19–11 ka; although the protocol covers 26–0 ka).Similar to the last deglaciation, the disintegration of continental ice sheets during the penultimate deglaciation led to significant changesin the oceanic circulation during Heinrich Stadial 11 (∼136–129 ka).However, the two deglaciations bear significant differences in magnitude and temporal evolution of climate and environmental changes. Here, as part of the Past Global Changes (PAGES)-PMIP working group on Quaternary interglacials (QUIGS), we propose a protocol to perform transient simulations of the penultimate deglaciationunder the auspices of PMIP4.This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration ofcontinental ice sheets.This experiment is designed for AOGCMs to assessthe coupled response of the climate system to all forcings.Additional sensitivity experiments are proposed to evaluate the response to each forcing.Finally, a selection of paleo-records representing different parts of the climate system is presented, providing an appropriatebenchmark for upcoming model–data comparisons across the penultimate deglaciation. 
                        more » 
                        « less   
                    
                            
                            Rapid northern hemisphere ice sheet melting during the penultimate deglaciation
                        
                    
    
            Abstract The rate and consequences of future high latitude ice sheet retreat remain a major concern given ongoing anthropogenic warming. Here, new precisely dated stalagmite data from NW Iberia provide the first direct, high-resolution records of periods of rapid melting of Northern Hemisphere ice sheets during the penultimate deglaciation. These records reveal the penultimate deglaciation initiated with rapid century-scale meltwater pulses which subsequently trigger abrupt coolings of air temperature in NW Iberia consistent with freshwater-induced AMOC slowdowns. The first of these AMOC slowdowns, 600-year duration, was shorter than Heinrich 1 of the last deglaciation. Although similar insolation forcing initiated the last two deglaciations, the more rapid and sustained rate of freshening in the eastern North Atlantic penultimate deglaciation likely reflects a larger volume of ice stored in the marine-based Eurasian Ice sheet during the penultimate glacial in contrast to the land-based ice sheet on North America as during the last glacial. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1702816
- PAR ID:
- 10353203
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Accurate reconstruction of Laurentide Ice Sheet volume changes following the Last Glacial Maximum is critical for understanding ice sheet contribution to sea-level rise, the resulting influence of meltwater on oceanic circulation, and the spatial and temporal patterns of deglaciation. Here, we provide empirical constraints on Laurentide Ice Sheet thinning during the last deglaciation by measuring in situ cosmogenic 10Be in 81 samples collected along vertical transects of nine mountains in the northeastern United States. In conjunction with 107 exposure age samples over five vertical transects from previous studies, we reconstruct ice sheet thinning history. At peripheral sites (within 200 km of the terminal moraine), we find evidence for ∼600 m of thinning between 19.5 ka and 17.5 ka, which is coincident with the slow initial margin retreat indicated by varve records. At locations >400 km north of the terminal moraine, exposure ages above and below 1200 m a.s.l. exhibit different patterns. Ages above this elevation are variable and older, while lower elevation ages are indistinguishable over 800−1000 m elevation ranges, a pattern that suggests a subglacial thermal boundary at ∼1200 m a.s.l. separating erosive, warm-based ice below and polythermal, minimally erosive ice above. Low-elevation ages from up-ice mountains are between 15 ka and 13 ka, which suggests rapid thinning of ∼1000 m coincident with Bølling-Allerød warming. These rates of rapid paleo-ice thinning are comparable to those of other vertical exposure age transects around the world and may have been faster than modern basin-wide thinning rates in Antarctica and Greenland, which suggests that the southeastern Laurentide Ice Sheet was highly sensitive to a warming climate.more » « less
- 
            During the last deglaciation temperatures over midcontinental North America warmed dramatically through the Bølling-Allerød, underwent a cool period associated with the Younger-Dryas and then reverted to warmer, near modern temperatures during the early Holocene. However, paleo proxy records of the hydroclimate of this period have presented divergent evidence. We reconstruct summer relative humidity (RH) across the last deglacial period using a mechanistic model of cellulose and leaf water δ 18 O and δD combined with a pollen-based temperature proxy to interpret stable isotopes of sub-fossil wood. Midcontinental RH was similar to modern conditions during the Last Glacial Maximum, progressively increased during the Bølling-Allerød, peaked during the Younger-Dryas, and declined sharply during the early Holocene. This RH record suggests deglacial summers were cooler and characterized by greater advection of moisture-laden air-masses from the Gulf of Mexico and subsequent entrainment over the mid-continent by a high-pressure system over the Laurentide ice sheet. These patterns help explain the formation of dark-colored cumulic horizons in many Great Plains paleosol sequences and the development of no-analog vegetation types common to the Midwest during the last deglacial period. Likewise, reduced early Holocene RH and precipitation correspond with a diminished glacial high-pressure system during the latter stages of ice-sheet collapse.more » « less
- 
            The Northwest Coast of North America stretches 4000 km from Bering Strait to Washington State. Here we review the history of glaciation, sea level, oceanography, and climate along the Northwest Coast and in the subarctic Pacific Ocean during the Last Glacial Maximum and deglaciation. The period of interest is Marine Isotope Stage 2 between ca. 29,000 calendar years ago (29 ka) and 11,700 calendar years ago (11.7 ka). The glacial history of the Northwest Coast involved multiple glacial systems responding independently to latitudinal variations in climate caused by changes in the North American ice sheets and in the tropical ocean-atmosphere system. Glaciers reached their maximum extents 1–5 kyrs later along the Northwest Coast than did large sectors of the Laurentide and Fennoscandian Ice Sheets. Local, Last Glacial Maxima were reached in a time-transgressive, north to south sequence between southwestern Alaska and Puget Sound. The history of relative sea level along the Northwest Coast during Marine Isotope Stage 2 was complex because of rapid isostatic adjustments by a thin lithosphere to these time-transgressive glacial fluctuations. Multiple lines of evidence suggest Bering Strait was first flooded by the sea after 11 ka and that it probably did not assume its present-day oceanographic functions until after 9 ka. The coldest intervals occurred during Heinrich Event 2 (ca. 26–23.5 ka), again between ca. 23 and 21.5 ka, and during Heinrich Event 1 (ca. 18–15 ka). During these times, mean annual sea surface temperatures cooled by 5o to 8o C in the Gulf of Alaska, and glacial equilibrium-line altitudes fell below present sea level in southern Alaska and along the Aleutian Island chain. Sea ice episodically expanded across the subarctic Pacific in winter. Oceanographic changes in the Gulf of Alaska tracked variations in the vigor of the Asian Summer Monsoon. The deglaciation of the Northwest Coast may have served as the trigger for global climate changes during deglaciation. Starting ca. 21 ka, marine-based glaciers there were increasingly destabilized by rising eustatic sea level and influxes of freshwater and heat associated with the rejuvenation of the Asian Summer Monsoon. Rapid retreat of marine-based glaciers began ca. 19 ka and released large numbers of ice bergs and vast amounts of freshwater into the Northeast Pacific. Resultant cooling of the North Pacific may have been teleconnected to the North Atlantic through the atmosphere, where it slowed Atlantic Meridional Overturning Circulation and initiated the global effects of Heinrich Event 1, ca. 18–15 ka. During the Younger Dryas, ca. 12.8–11.7 ka, mean annual sea surface temperatures were 4o to 6o C cooler than today in the Gulf of Alaska, and sea ice again expanded across the subarctic Pacific in winter. Conditions of extreme seasonality characterized by cold, dry winters and warm, steadily ameliorating summers caused by the southward diversion of the Aleutian Low in winter may explain the previously enigmatic records of Younger Dryas climate along the Northwest Coast.more » « less
- 
            The deglaciation record of the Ontario Lowland and Mohawk Valley of North America is important for constraining the retreat history of the Laurentide Ice Sheet, end-Pleistocene paleoclimate, and ice-sheet processes. The Mohawk Valley was an important meltwater drainage route during the last deglaciation, with the area around modern Oneida Lake acting as a valve for meltwater discharge into the North Atlantic Ocean. The Mohawk Valley was occupied by the Oneida Lobe and Oneida Ice Stream during the last deglacial period. Multichannel seismic reflection data can be used to generate images of preglacial surfaces and internal structures of glacial bedforms and proglacial lake deposits, thus contributing to studies of deglaciation. This paper uses 217 km of offshore multichannel seismic reflection data to image the entire Quaternary section of the Oneida basin. A proglacial lake and paleo-calving margin is interpreted, which likely accelerated the Oneida Ice Stream, resulting in elongated bedforms observed west of the lake. The glacial bedforms identified in this study are buried by proglacial lake deposits, indicating the Oneida basin contains a record of glacial meltwater processes, including a 60-m-thick proglacial interval in eastern Oneida Lake.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    