skip to main content


Title: A ridge-to-reef ecosystem microbial census reveals environmental reservoirs for animal and plant microbiomes
Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts’ microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.  more » « less
Award ID(s):
2023298 1920304 2124922
NSF-PAR ID:
10353253
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
33
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Inter-population variation in host-associated microbiota reflects differences in the hosts’ environments, but this characterization is typically based on studies comparing few populations. The diversity of natural habitats and captivity conditions occupied by any given host species has not been captured in these comparisons. Moreover, intraspecific variation in gut microbiota, generally attributed to diet, may also stem from differential acquisition of environmental microbes—an understudied mechanism by which host microbiomes are directly shaped by environmental microbes. To more comprehensively characterize gut microbiota in an ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial source tracking to examine covariation between the two types of consortia.

    Results

    The diversity of lemur gut microbes varied markedly within and between settings. Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that this metric is not necessarily an indicator of host habitat or environmental condition. Variation in microbial composition was inconsistent both with a single, representative gut community for wild conspecifics and with a universal ‘signal of captivity’ that homogenizes the gut consortia of captive animals. Despite the similar, commercial diets of captive lemurs on both continents, lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that non-dietary factors govern some of the variability. In particular, soil microbial communities varied across geographic locations, with the few samples from different continents being the most distinct, and there was significant and context-specific covariation between gut and soil microbiota.

    Conclusions

    As one of the broadest, single-species investigations of primate microbiota, our study highlights that gut consortia are sensitive to multiple scales of environmental differences. This finding begs a reevaluation of the simple ‘captive vs. wild’ dichotomy. Beyond the important implications for animal care, health, and conservation, our finding that environmental acquisition may mediate aspects of host-associated consortia further expands the framework for how host-associated and environmental microbes interact across different microbial landscapes.

     
    more » « less
  2. Campbell, Barbara J. (Ed.)
    ABSTRACT Hadal snailfishes are the deepest-living fishes in the ocean, inhabiting trenches from depths of ∼6,000 to 8,000 m. While the microbial communities in trench environments have begun to be characterized, the microbes associated with hadal megafauna remain relatively unknown. Here, we describe the gut microbiomes of two hadal snailfishes, Pseudoliparis swirei (Mariana Trench) and Notoliparis kermadecensis (Kermadec Trench), using 16S rRNA gene amplicon sequencing. We contextualize these microbiomes with comparisons to the abyssal macrourid Coryphaenoides yaquinae and the continental shelf-dwelling snailfish Careproctus melanurus . The microbial communities of the hadal snailfishes were distinct from their shallower counterparts and were dominated by the same sequences related to the Mycoplasmataceae and Desulfovibrionaceae . These shared taxa indicate that symbiont lineages have remained similar to the ancestral symbiont since their geographic separation or that they are dispersed between geographically distant trenches and subsequently colonize specific hosts. The abyssal and hadal fishes contained sequences related to known, cultured piezophiles, microbes that grow optimally under high hydrostatic pressure, including Psychromonas , Moritella , and Shewanella . These taxa are adept at colonizing nutrient-rich environments present in the deep ocean, such as on particles and in the guts of hosts, and we hypothesize they could make a dietary contribution to deep-sea fishes by degrading chitin and producing fatty acids. We characterize the gut microbiota within some of the deepest fishes to provide new insight into the diversity and distribution of host-associated microbial taxa and the potential of these animals, and the microbes they harbor, for understanding adaptation to deep-sea habitats. IMPORTANCE Hadal trenches, characterized by high hydrostatic pressures and low temperatures, are one of the most extreme environments on our planet. By examining the microbiome of abyssal and hadal fishes, we provide insight into the diversity and distribution of host-associated life at great depth. Our findings show that there are similar microbial populations in fishes geographically separated by thousands of miles, reflecting strong selection for specific microbial lineages. Only a few psychropiezophilic taxa, which do not reflect the diversity of microbial life at great depth, have been successfully isolated in the laboratory. Our examination of deep-sea fish microbiomes shows that typical high-pressure culturing methodologies, which have largely remained unchanged since the pioneering work of Claude ZoBell in the 1950s, may simulate the chemical environment found in animal guts and helps explain why the same deep-sea genera are consistently isolated. 
    more » « less
  3. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution. 
    more » « less
  4. Abstract

    Freshwater mussels are important for nutrient cycling and ecosystem health as they filter feed on their surrounding water. This filter feeding makes these bivalves especially sensitive to conditions in their environment. Gut microbial communities (microbiomes) have been recognised as important to both host organism and ecosystem health; however, how freshwater mussel microbiomes are organised and influenced is unclear.

    In this study, the gut bacterial microbiome of Threeridge mussel,Amblema plicata, was compared across two river basins, five rivers, and nine local sites in the south‐eastern U.S.A. Mussel gut tissue was dissected, DNA extracted, and the microbiome characterised by high throughput sequencing of the V4 region of the 16S ribosomal RNA gene.

    Planctomycetes, Firmicutes, and Cyanobacteria were the most common bacterial phyla within the guts of all sampledA.plicata. However, the relative abundances of these major bacterial phyla differed between mussels sampled from different rivers and river basins, as did the relative abundance of specific bacterial operational taxonomic units (OTUs). Despite these differences, a core microbiome was identified across all mussels, with eight OTUs being consistent members of theA.plicatamicrobiome at all sites, the most abundant OTU identifying as a member of the family Planctomycetaceae. Geographic distance between sites was not correlated with similarity in the structure of the gut microbiome, which was more related to site physicochemistry.

    Overall, these results suggest that while physicochemical conditions affect the composition of transient bacteria in the Threeridge mussel gut microbiome, the core microbiome is largely unaffected, and a portion of theA.plicatamicrobiome is retained regardless of the river system.

    How long transient bacteria remain in the gut, and to what extent these transient microbes aid in host function is still unknown. Core microbiota have been found to aid in multiple functions within animal hosts, and within freshwater mussels this core microbiome may aid in nutrient processing and cycling. Therefore, it is important to look at both transient and core microbes when studying the structure of freshwater invertebrate microbiomes.

     
    more » « less
  5. Abstract

    Although stability is relatively well understood in macro‐organisms, much less is known about its drivers in host–microbial systems where processes operating at multiple levels of biological organisation jointly regulate the microbiome.

    We conducted an experiment to examine the microbiome stability of three Caribbean corals (Acropora cervicornis,Pseudodiploria strigosaandPorites astreoides) by placing them in aquaria and exposing them to a pulse perturbation consisting of a large dose of broad‐spectrum antibiotics before transplanting them into the field.

    We found that coral hosts harboured persistent, species‐specific microbiomes. Stability was generally high but variable across coral species, withA. cervicornismicrobiomes displaying the lowest community turnover in both the non‐perturbed and the perturbed field transplants. Interestingly, the microbiome ofP. astreoideswas stable in the non‐perturbed field transplants, but unstable in the perturbed field transplants.

    A mathematical model of host–microbial dynamics helped resolve this paradox by showing that when microbiome regulation is driven by host sanctioning, both resistance and resilience to invasion are low and can lead to instability despite the high direct costs bourne by corals. Conversely, when microbiome regulation is mainly associated with microbial processes, both resistance and resilience to invasion are high and promote stability at no direct cost to corals. We suggest that corals that are mainly regulated by microbial processes can be likened to ‘glass cannons’ because the high stability they exhibit in the field is due to their microbiome's potent suppression of invasive microbes. However, these corals are susceptible to destabilisation when exposed to perturbations that target the vulnerable members of their microbiomes who are responsible for mounting such powerful attacks against invasive microbes. The differential patterns of stability exhibited byP. astreoidesacross perturbed and non‐perturbed field transplants suggest it is a ‘glass cannon’ whose microbiome is regulated by microbial processes, whereasA. cervicornis’ consistent patterns of stability suggest that its microbiome is mainly regulated by host‐level processes.

    Our results show that understanding how processes that operate at multiple levels of biological organisation interact to regulate microbiomes is critical for predicting the effects of environmental perturbations on host–microbial systems.

     
    more » « less