skip to main content

This content will become publicly available on January 1, 2023

Title: Co-infesting symbionts on a threatened marine host: evaluating correlations between an introduced parasitic isopod and a native symbiotic clam
In marine ecosystems, increased global-scale transportation creates opportunities for rapid introduction of invasive parasitic species that, in some cases, result in dramatic shifts within the native communities. A lack of detailed knowledge regarding the ecology of invasive marine parasites hinders our ability to develop effective conservation strategies and avoid unforeseen ecological consequences. We examined co-infestation patterns of a highly pathogenic, introduced parasitic isopod (Orthione griffenis) and a native symbiotic clam (Neaeromya rugifera) on the North American native blue mud shrimp Upogebia pugettensis. Our comparisons included infestations of O. griffenis and N. rugifera among 447 U. pugettensis hosts over 3 study years and were designed to statistically assess whether the 2 symbionts exhibited significant associations with one another. Our results indicate that infestations by the 2 symbiont species are positively correlated, such that the presence of one symbiont is a strong, positive predictor for the presence of the other. For both symbionts, host size is an important factor that drives the observed correlation. Host sex is also influential for O. griffenis. Interestingly, even after accounting for these host attributes, the infestations by the 2 symbionts continue to correlate positively, particularly among older (second-year and beyond) symbionts, highlighting the likely influence of more » additional host and environmental factors in driving the symbiont correlation post-settlement. We consider potential mechanisms, including differential energetic reserves and longevities between infested and co-infested hosts, in detail. These results offer insights into the ecological drivers of symbiont co-infestation, which have important implications for understanding host-parasite interactions and future conservation measures. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Marine ecology
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species.


    In this study on the obligate symbiosis between the gutless marine annelidOlavius algarvensisand its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80O. algarvensisindividuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium ofmore »allO. algarvensisindividuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted.


    We hypothesize that variable degrees of fidelity are advantageous forO. algarvensisby allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources.

    « less
  2. Abstract

    Pinnixion sexdecennia n. gen., n. sp. is described from three pinnotherid hosts: Austinixa gorei (Manning & Felder, 1989), Pinnixa chaetopterana Stimpson, 1860, and Zaops ostreus (Say, 1817). Females of the new species are distinguished from all other entoniscids by possessing two transverse lobes on oostegite 1 and fused oostegites 2–5; males have a pair of lateral expansions on each of the first two pleomeres. The epicaridium larvae of the new species also have a unique elongated, cylindrical terminal process on the pereopod 6 dactylus. Pinnixion sexdecennian. gen., n. sp. exhibited highest prevalence (> 40%) in North Carolina and Florida. Examination of live specimens of P. chaetopterana infested with mature female isopods showed that larvae are liberated via a pore produced in the wall of the host’s branchial chamber. Mature females of P. sexdecennian. gen., n. sp. occupied nearly all available space within the host crab’s hemocoel. Female P. chaetopterana had higher prevalence than males, and intensities of infestations were also greater in females. Evidence from all locations showed that mature parasites do not inhibit breeding or molting in the host. Our report is one of the few studies on the ecology and biology of entoniscids, a cryptic but ecologicallymore »important group of parasitic isopods. We also resolve long-standing nomenclatural issues involving Entione Kossmann, 1881 and Entioninae Codreanu, Codreanu & Pike, 1960, the subfamily to which the new genus and species belongs, by synonymizing Grapsion Giard & Bonnier, 1886 with Entione.

    « less
  3. Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects’ adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several ofmore »these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont—Hamiltonella defensa—studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such “hitchhiking” effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont—Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases—including the one described above for Hamiltonella—our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for “passenger” symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.« less
  4. Diseases and insects, particularly those that are non-native and invasive, arguably pose the most destructive threat to North American forests. Currently, both exotic and native insects and diseases are producing extensive ecological damage and economic impacts. As part of an effort to identify United States tree species and forests most vulnerable to these epidemics, we compiled a list of the most serious insect and disease threats for 419 native tree species and assigned a severity rating for each of the 1378 combinations between mature tree hosts and 339 distinct insect and disease agents. We then joined this list with data from a spatially unbiased and nationally consistent forest inventory to assess the potential ecological impacts of insect and disease infestations. Specifically, potential host species mortality for each host/agent combination was used to weight species importance values on approximately 132,000 Forest Inventory and Analysis (FIA) plots across the conterminous 48 United States. When summed on each plot, these weighted importance values represent an estimate of the proportion of the plot’s existing importance value at risk of being lost. These plot estimates were then used to identify statistically significant geographic hotspots and coldspots and of potential forest impacts associated with insects andmore »diseases in total, and for different agent types. In general, the potential impacts of insects and diseases were greater in the West, where there are both fewer agents and less diverse forests. The impact of non-native invasive agents, however, was potentially greater in the East. Indeed, the impacts of current exotic pests could be greatly magnified across much of the Eastern United States if these agents are able to reach the entirety of their hosts’ ranges. Both the list of agent/host severities and the spatially explicit results can inform species-level vulnerability assessments and broad-scale forest sustainability reporting efforts, and should provide valuable information for decision-makers who need to determine which tree species and locations to target for monitoring efforts and pro-active management activities.« less
  5. The ability of symbionts to recolonize their hosts after a period of dysbiosis is essential to maintain a resilient partnership. Many cnidarians rely on photosynthate provided from a large algal symbiont population. Under periods of thermal stress, symbiont densities in host cnidarians decline, and the recovery of hosts is dependent on the re-establishment of symbiosis. The cellular mechanisms that govern this process of colonization are not well-defined and require further exploration. To study this process in the symbiotic sea anemone model Exaiptasia diaphana , commonly called Aiptasia, we developed a non-invasive, efficient method of imaging that uses autofluorescence to measure the abundance of symbiont cells, which were spatially distributed into distinct cell clusters within the gastrodermis of host tentacles. We estimated cell cluster sizes to measure the occurrence of singlets, doublets, and so on up to much larger cell clusters, and characterized colonization patterns by native and non-native symbionts. Native symbiont Breviolum minutum rapidly recolonized hosts and rapidly exited under elevated temperature, with increased bleaching susceptibility for larger symbiont clusters. In contrast, populations of non-native symbionts Symbiodinium microadriaticum and Durusdinium trenchii persisted at low levels under elevated temperature. To identify mechanisms driving colonization patterns, we simulated symbiont population changes throughmore »time and determined that migration was necessary to create observed patterns (i.e., egression of symbionts from larger clusters to establish new clusters). Our results support a mechanism where symbionts repopulate hosts in a predictable cluster pattern, and provide novel evidence that colonization requires both localized proliferation and continuous migration.« less