skip to main content


Title: The 26S Proteasome Switches between ATP-Dependent and -Independent Mechanisms in Response to Substrate Ubiquitination
The ubiquitin–proteasome system is responsible for the bulk of protein degradation in eukaryotic cells. Proteins are generally targeted to the 26S proteasome through the attachment of polyubiquitin chains. Several proteins also contain ubiquitin-independent degrons (UbIDs) that allow for proteasomal targeting without the need for ubiquitination. Our laboratory previously showed that UbID substrates are less processively degraded than ubiquitinated substrates, but the mechanism underlying this difference remains unclear. We therefore designed two model substrates containing both a ubiquitination site and a UbID for a more direct comparison. We found UbID degradation to be overall less robust, with complete degradation only occurring with loosely folded substrates. UbID degradation was unaffected by the nonhydrolyzable ATP analog ATPγS, indicating that UbID degradation proceeds in an ATP-independent manner. Stabilizing substrates halted UbID degradation, indicating that the proteasome can only capture UbID substrates if they are already at least transiently unfolded, as confirmed using native-state proteolysis. The 26S proteasome therefore switches between ATP-independent weak degradation and ATP-dependent robust unfolding and degradation depending on whether or not the substrate is ubiquitinated.  more » « less
Award ID(s):
1935596
NSF-PAR ID:
10353425
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biomolecules
Volume:
12
Issue:
6
ISSN:
2218-273X
Page Range / eLocation ID:
750
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cdc48/p97 is an essential and highly conserved AAA+ ATPase that uses its protein-unfoldase activity to extract ubiquitinated polypeptides from macromolecular complexes and membranes. This motor has also been implicated in protein-degradation pathways, yet its exact role in acting upstream of the 26S proteasome remains elusive. Ubiquitinated proteins destined for degradation by the proteasome require an unstructured initiation region to engage with the proteasomal translocation machinery, and Cdc48 was proposed to generate these unfolded segments, yet direct evidence has been missing. Here, we used an in vitro reconstituted system to demonstrate the collaboration of Cdc48 and the 26S proteasome fromS.cerevisiaein degrading ubiquitinated, well-folded proteins that lack unstructured segments. Our data indicate that a critical role for Cdc48 in the ubiquitin-proteasome system is to create flexible initiation regions in compact substrates that otherwise would be refractory to engagement and degradation by the proteasome.

     
    more » « less
  2. Abstract The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins. 
    more » « less
  3. Summary

    Light signal provides the spatial and temporal information for plants to adapt to the prevailing environmental conditions. Alterations in light quality and quantity can trigger robust changes in global gene expression. InArabidopsis thaliana, two groups of key factors regulating those changes in gene expression areCONSTITUTIVE PHOTOMORPHOGENESIS/DEETIOLATED/FUSCA(COP/DET/FUS) and a subset of basic helix‐loop‐helix transcription factors calledPHYTOCHROMEINTERACTING FACTORS(PIFs). Recently, rapid progress has been made in characterizing the E3 ubiquitin ligases for the light‐induced degradation ofPIF1,PIF3 andPIF4; however, the E3 ligase(s) forPIF5 remains unknown. Here, we show that theCUL4COP1–SPAcomplex is necessary for the red light‐induced degradation ofPIF5. Furthermore,COP1 andSPAproteins stabilizePIF5 in the dark, but promote the ubiquitination and degradation ofPIF5 in response to red light through the 26S proteasome pathway. Genetic analysis illustrates that overexpression ofPIF5can partially suppress bothcop1‐4andspaQseedling de‐etiolation phenotypes under dark and red‐light conditions. In addition, thePIF5 protein level cycles under both diurnal and constant light conditions, which is also defective in thecop1‐4andspaQbackgrounds. Bothcop1‐4andspaQshow defects in diurnal growth pattern. Overexpression ofPIF5partially restores growth defects incop1‐4andspaQunder diurnal conditions, suggesting that theCOP1–SPAcomplex plays an essential role in photoperiodic hypocotyl growth, partly through regulating thePIF5 level. Taken together, our data illustrate how theCUL4COP1–SPAE3 ligase dynamically controls thePIF5 level to regulate plant development.

     
    more » « less
  4. Summary

    Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins includingPEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of thePEX1 andPEX6ATPases and thePEX26 tail‐anchored membrane protein removes ubiquitinatedPEX5 from the peroxisomal membrane. We identified Arabidopsispex6andpex26mutants by screening for inefficient seedling β‐oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The lowPEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combiningpex26with peroxisome‐associated ubiquitination machinery mutants, suggesting that ubiquitinatedPEX5 is degraded by the proteasome when the function ofPEX6 orPEX26 is reduced. Combiningpex26with mutations that increasePEX5 levels either worsened or improvedpex26physiological and molecular defects, depending on the introduced lesion. Moreover, elevatingPEX5 levels via a35S:PEX5transgene exacerbatedpex26defects and ameliorated the defects of only a subset ofpex6alleles, implying that decreasedPEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies inpex6andpex26seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of thesepexalleles may reflect unanticipated functions of the peroxisomalATPase complex.

     
    more » « less
  5. Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S2-haplotype and S3-haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1–Cullin1– F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCFSLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1, and examined the SI behavior of a T0 plant (S2S3) with biallelic mutations in the pollen genome and two progeny plants (S2S2) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise compatible S-genotypes, but fully compatible with pistils of an S3S3 transgenic plant in which production of S3-RNase was completely suppressed by an antisense S3-RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI, and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination. 
    more » « less