- PAR ID:
- 10353560
- Date Published:
- Journal Name:
- Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems
- Page Range / eLocation ID:
- 597–605
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In fair division of indivisible goods, ℓ-out-of-d maximin share (MMS) is the value that an agent can guarantee by partitioning the goods into d bundles and choosing the ℓ least preferred bundles. Most existing works aim to guarantee to all agents a constant fraction of their 1-out-of-n MMS. But this guarantee is sensitive to small perturbation in agents' cardinal valuations. We consider a more robust approximation notion, which depends only on the agents' ordinal rankings of bundles. We prove the existence of ℓ-out-of-⌊(ℓ + 1/2)n⌋ MMS allocations of goods for any integer ℓ ≥ 1, and present a polynomial-time algorithm that finds a 1-out-of-⌈3n/2⌉ MMS allocation when ℓ=1. We further develop an algorithm that provides a weaker ordinal approximation to MMS for any ℓ > 1.more » « less
-
In fair division of indivisible goods, l-out-of-d maximin share (MMS) is the value that an agent can guarantee by partitioning the goods into d bundles and choosing the l least preferred bundles. Most existing works aim to guarantee to all agents a constant fraction of their 1-out-of-n MMS. But this guarantee is sensitive to small perturbation in agents' cardinal valuations. We consider a more robust approximation notion, which depends only on the agents' ordinal rankings of bundles. We prove the existence of l-out-of-floor((l+1/2)n) MMS allocations of goods for any integer l greater than or equal to 1, and present a polynomial-time algorithm that finds a 1-out-of-ceiling(3n/2) MMS allocation when l = 1. We further develop an algorithm that provides a weaker ordinal approximation to MMS for any l > 1.more » « less
-
We study fair division of indivisible chores among n agents with additive disutility functions. Two well-studied fairness notions for indivisible items are envy-freeness up to one/any item (EF1/EFX) and the standard notion of economic efficiency is Pareto optimality (PO). There is a noticeable gap between the results known for both EF1 and EFX in the goods and chores settings. The case of chores turns out to be much more challenging. We reduce this gap by providing slightly relaxed versions of the known results on goods for the chores setting. Interestingly, our algorithms run in polynomial time, unlike their analogous versions in the goods setting.We introduce the concept of k surplus in the chores setting which means that up to k more chores are allocated to the agents and each of them is a copy of an original chore. We present a polynomial-time algorithm which gives EF1 and PO allocations with n-1 surplus.We relax the notion of EFX slightly and define tEFX which requires that the envy from agent i to agent j is removed upon the transfer of any chore from the i's bundle to j's bundle. We give a polynomial-time algorithm that in the chores case for 3 agents returns an allocation which is either proportional or tEFX. Note that proportionality is a very strong criterion in the case of indivisible items, and hence both notions we guarantee are desirable.
-
We study fair distribution of a collection of m indivisible goods among a group of n agents, using the widely recognized fairness principles of Maximin Share (MMS) and Any Price Share (APS). These principles have undergone thorough investigation within the context of additive valuations. We explore these notions for valuations that extend beyond additivity.First, we study approximate MMS under the separable (piecewise-linear) concave (SPLC) valuations, an important class generalizing additive, where the best known factor was 1/3-MMS. We show that 1/2-MMS allocation exists and can be computed in polynomial time, significantly improving the state-of-the-art.We note that SPLC valuations introduce an elevated level of intricacy in contrast to additive. For instance, the MMS value of an agent can be as high as her value for the entire set of items. We use a relax-and-round paradigm that goes through competitive equilibrium and LP relaxation. Our result extends to give (symmetric) 1/2-APS, a stronger guarantee than MMS.APS is a stronger notion that generalizes MMS by allowing agents with arbitrary entitlements. We study the approximation of APS under submodular valuation functions. We design and analyze a simple greedy algorithm using concave extensions of submodular functions. We prove that the algorithm gives a 1/3-APS allocation which matches the best-known factor. Concave extensions are hard to compute in polynomial time and are, therefore, generally not used in approximation algorithms. Our approach shows a way to utilize it within analysis (while bypassing its computation), and hence might be of independent interest.
-
We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts.more » « less