skip to main content


Title: Culturally-based Ethical Barriers for American Indian/Alaska Native Students and Professionals in Engineering
Prior research suggests various reasons for the paucity of American Indian/Alaska Native (AI/AN) people in engineering fields, including academic deficiencies, lack of role models, and minimal financial support to pursue a college education. One potential reason that has yet to be explored relates to the cultural and spiritual barriers that could deter AI/AN people from feeling a sense of belonging in engineering fields. These barriers may create obstacles to progressing through engineering career pathways. Our research investigates the range and variation of cultural/spiritual/ethical issues that may be affecting AI/AN people’s success in engineering and other science, technology, and mathematics fields. The work reported here focuses on findings from students and professionals in engineering fields specifically. The study seeks to answer two research questions: (1) What ethical issues do AI/AN students and professionals in engineering fields experience, and how do they navigate these issues?, and (2) Do ethical issues impede AI/AN students from pursuing engineering careers, and if so, how? We distributed an online survey to AI/AN college students (undergraduate and graduate) and professionals in STEM fields, including engineers, in the western United States region. Our results indicate strong connections to AI/AN culture by the participants in the study as well as some cultural, ethical, and/or spiritual barriers that exist for AI/AN individuals in the engineering field. The AI/AN professionals had less concerns with respect to activities that may conflict with AI/AN cultural customs compared to the students, which may be a result of the professionals having gained experiences that allow them to navigate these situations. Overall, our research offers insights for policy and practice within higher education institutions with engineering majors and/or graduate programs and organizations that employ engineering professionals.  more » « less
Award ID(s):
1835108
NSF-PAR ID:
10353697
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference Content Access
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Qin Zhu, PhD Assistant Professor (Ed.)
    Prior research suggests various reasons for the paucity of American Indian/Alaska Native (AI/AN) people in engineering fields, including academic deficiencies, lack of role models, and minimal financial support to pursue a college education. One potential reason that has yet to be explored relates to the cultural and spiritual barriers that could deter AI/AN people from feeling a sense of belonging in engineering fields. These barriers may create obstacles to progressing through engineering career pathways. Our research investigates the range and variation of cultural/spiritual/ethical issues that may be affecting AI/AN people’s success in engineering and other science, technology, and mathematics fields. The work reported here focuses on findings from students and professionals in engineering fields specifically. The study seeks to answer two research questions: (1) What ethical issues do AI/AN students and professionals in engineering fields experience, and how do they navigate these issues?, and (2) Do ethical issues impede AI/AN students from pursuing engineering careers, and if so, how? We distributed an online survey to AI/AN college students (undergraduate and graduate) and professionals in STEM fields, including engineers, in the western United States region. Our results indicate strong connections to AI/AN culture by the participants in the study as well as some cultural, ethical, and/or spiritual barriers that exist for AI/AN individuals in the engineering field. The AI/AN professionals had less concerns with respect to activities that may conflict with AI/AN cultural customs compared to the students, which may be a result of the professionals having gained experiences that allow them to navigate these situations. Overall, our research offers insights for policy and practice within higher education institutions with engineering majors and/or graduate programs and organizations that employ engineering professionals 
    more » « less
  2. null (Ed.)
    Amidst growing concerns about a lack of attention to ethics in engineering education and professional practice, a variety of formal course-based interventions and informal or extracurricular programs have been created to improve the social and ethical commitments of engineering graduates. To supplement the formal and informal ethics education received as undergraduate students, engineering professionals often also participate in workplace training and professional development activities on ethics, compliance, and related topics. Despite this preparation, there is growing evidence to suggest that technical professionals are often challenged to navigate ethical situations and dilemmas. Some prior research has focused on assessing the impacts of a variety of learning experiences on students’ understandings of ethics and social responsibility, including the PIs’ prior NSF-funded CCE STEM study which followed engineering students through the four years of their undergraduate studies using both quantitative and qualitative research methods. This prior project explored how the students’ views on these topics changed across demographic groups, over time, between institutions, and due to specific interventions. Yet, there has been little longitudinal research on how these views and perceptions change (or do not change) among engineers during the school-to-work transition. Furthermore, there has been little exploration of how these views are influenced by the professional contexts in which these engineers work, including cultures and norms prevalent in different technical fields, organizations, and industry sectors. This NSF-supported Ethical and Responsible Research (ER2) study responds to these gaps in the literature by asking: RQ1) How do perceptions of ethics and social responsibility change in the transition from undergraduate engineering degree programs to the workplace (or graduate studies), and how are these perceptions shaped or influenced?, and RQ2) How do perceptions of ethics and social responsibility vary depending on a given individual’s engineering discipline/background and current professional setting? This paper gives an overview of the research project, describing in particular the longitudinal, mixed-methods study design which will involve collecting and analyzing data from a large sample of early career engineers. More specifically, we will present the proposed study contexts, timeline, target subject populations, and procedures for quantitative and qualitative data collection and analysis. We will also describe how this study leverages our prior project, thereby allowing unique longitudinal comparisons that span participants’ years as an engineering undergraduate student to their time as an early-career professional. Through this project, we aim to better understand how early career engineers’ perceptions of social and ethical responsibility are shaped by their prior experiences and current professional contexts. This paper will likely be of particular interest to scholars who teach or research engineering ethics, social responsibility, and professional practice. 
    more » « less
  3. The purpose of this research full paper is to investigate issues facing very early-stage master’s students as they transition into a degree program at a large research-intensive university. While there is an increasing focus on graduate and doctoral engineering education, few studies have sought to focus specifically on master’s students, treating them from a research perspective as miniature doctoral students, though it is documented that MS students in engineering have different goals and motivations for pursuing graduate study than PhD students, as well as different anticipated career trajectories. To further compound these gaps in the literature, most studies assume that doctoral students in engineering come from historically privileged socioeconomic backgrounds. National conversations are clear that to broaden participation in engineering, the educational community must attend to the specific needs of students from low-income backgrounds. These students may also not have access to the social and cultural capital required to navigate graduate school, since many are first-generation graduate students and because systems of education are traditionally designed for students from upper class backgrounds. To this end, this study explores the experiences of first-semester graduate students supported in part by funding aimed to support master’s students and have demonstrated unmet financial need. Interviews were conducted with six first- and second year master’s students and analyzed using thematic analysis methods employing Posselt’s Framework for Doctoral Student Support—here, extended to master’s students—to elicit information about surprises, expectations, and unanticipated issues facing this special population of students. Findings indicate that there are several easily implemented structural modifications programs and faculty can take that can facilitate the transition to graduate school for graduate students, low-income and otherwise. 
    more » « less
  4. Many college students in West Virginia hail from rural communities and are the first in their families to pursue an undergraduate degree. Research indicates that first-generation college students can face particular barriers to their postsecondary persistence, as can rural students. However, data on the persistence of first-generation college students who are also from rural places is scant. To better understand—and help remove—the barriers confronting such young people interested in STEM (Science, Technology, Engineering and Mathematics), the FIRST TWO Project (https://first2network.org/) brings together community college and university faculty, administrators, national laboratory professionals, and rural education experts. The FIRST TWO pilot program integrates early STEM experiences via internships, a support network for rural first-generation STEM students, and STEM skills development through a discovery-based "principles of research and development" college seminar for first-year students. A "Hometown Ambassadors" program component prepares students to return to their home communities to engage younger students’ interest in STEM, and teachers’ and school board members’ support for STEM education. Our goal is for project courses and support mechanisms to be fully transferrable to other institutions of higher education in the state so that, ultimately, more rural first-generation students participate in the wider STEM enterprise.   Funding for the project is provided by the National Science Foundation INCLUDES (Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science) initiative. 
    more » « less
  5. Ethics is crucial to engineering, although disagreement exists concerning the form engineering ethics education should take. In part, this results from disagreements about the goal of this education, which inhibit the development of and progress in cohesive research agendas and practices. In this regard, engineering ethics faces challenges like other professional ethics. To address these issues, this paper argues that the ultimate goal of engineering ethics education should be more long-term ethical behaviors, but that engineering ethics must more fully engage with the fields of empirical moral and cultural psychology to do so. It begins by considering reasons for adopting ethical behaviors as the ultimate goal of ethics education, and moves on to discuss why ethical behaviors have not been adopted as the goal of ethics education. The paper ends by considering responses to these problems, why ethical behaviors should still be adopted as the ultimate goal of ethics education. 
    more » « less