Abstract Climate‐modulated parasitism is driven by a range of factors, yet the spatial and temporal variability of this relationship has received scant attention in wild vertebrate hosts. Moreover, most prior studies overlooked the intraspecific differences across host morphotypes, which impedes a full understanding of the climate–parasitism relationship. In the common lizard (Zootoca vivipara), females exhibit three colour morphs: yellow (Y‐females), orange (O‐females) and mixed (mixture of yellow and orange, M‐females).Zootoca viviparais also infested with an ectoparasite (Ophionyssusmites). We therefore used this model system to examine the intraspecific response of hosts to parasitism under climate change. We found infestation probability to differ across colour morphs at both spatial (10 sites) and temporal (20 years) scales: M‐females had lower parasite infestations than Y‐ and O‐females at lower temperatures, but became more susceptible to parasites as temperature increased. The advantage of M‐females at low temperatures was counterbalanced by their higher mortality rates thereafter, which suggests a morph‐dependent trade‐off between resistance to parasites and host survival. Furthermore, significant interactions between colour morphs and temperature indicate that the relationship between parasite infestations and climate warming was contingent on host morphotypes. Parasite infestations increased with temperature for most morphs, but displayed morph‐specific rates. Finally, infested M‐females had higher reductions in survival rates than infested Y‐ or O‐females, which implies a potential loss of intraspecific diversity within populations as parasitism and temperatures rise. Overall, we found parasitism increases with warming temperatures, but this relationship is modulated by host morphotypes and an interaction with temperature. We suggest that epidemiological models incorporate intraspecific diversity within species for better understanding the dynamics of wildlife diseases under climate warming.
more »
« less
The weaker sex: Male lingcod (Ophiodon elongatus) with blue color polymorphism are more burdened by parasites than are other sex–color combinations
The unusual blue color polymorphism of lingcod ( Ophiodon elongatus ) is the subject of much speculation but little empirical research; ~20% of lingcod individuals exhibit this striking blue color morph, which is discrete from and found within the same populations as the more common brown morph. In other species, color polymorphisms are intimately linked with host–parasite interactions, which led us to ask whether blue coloration in lingcod might be associated with parasitism, either as cause or effect. To test how color and parasitism are related in this host species, we performed parasitological dissection of 89 lingcod individuals collected across more than 26 degrees of latitude from Alaska, Washington, and California, USA. We found that male lingcod carried 1.89 times more parasites if they were blue than if they were brown, whereas there was no difference in parasite burden between blue and brown female lingcod. Blue individuals of both sexes had lower hepatosomatic index (i.e., relative liver weight) values than did brown individuals, indicating that blueness is associated with poor body condition. The immune systems of male vertebrates are typically less effective than those of females, due to the immunocompromising properties of male sex hormones; this might explain why blueness is associated with elevated parasite burdens in males but not in females. What remains to be determined is whether parasites induce physiological damage that produces blueness or if both blue coloration and parasite burden are driven by some unmeasured variable, such as starvation. Although our study cannot discriminate between these possibilities, our data suggest that the immune system could be involved in the blue color polymorphism–an exciting jumping-off point for future research to definitively identify the cause of lingcod blueness and a hint that immunocompetence and parasitism may play a role in lingcod population dynamics.
more »
« less
- Award ID(s):
- 1829509
- PAR ID:
- 10353804
- Editor(s):
- Lutermann, Heike
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 12
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0261202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Research on the ‘ecology of fear’ posits that defensive prey responses to avoid predation can cause non-lethal effects across ecological scales. Parasites also elicit defensive responses in hosts with associated non-lethal effects, which raises the longstanding, yet unresolved question of how non-lethal effects of parasites compare with those of predators. We developed a framework for systematically answering this question for all types of predator–prey and host–parasite systems. Our framework reveals likely differences in non-lethal effects not only between predators and parasites, but also between different types of predators and parasites. Trait responses should be strongest towards predators, parasitoids and parasitic castrators, but more numerous and perhaps more frequent for parasites than for predators. In a case study of larval amphibians, whose trait responses to both predators and parasites have been relatively well studied, existing data indicate that individuals generally respond more strongly and proactively to short-term predation risks than to parasitism. Apart from studies using amphibians, there have been few direct comparisons of responses to predation and parasitism, and none have incorporated responses to micropredators, parasitoids or parasitic castrators, or examined their long-term consequences. Addressing these and other data gaps highlighted by our framework can advance the field towards understanding how non-lethal effects impact prey/host population dynamics and shape food webs that contain multiple predator and parasite species.more » « less
-
Abstract Many organisms can reproduce both asexually and sexually. For cyclical parthenogens, periods of asexual reproduction are punctuated by bouts of sexual reproduction, and the shift from asexual to sexual reproduction has large impacts on fitness and population dynamics. We studied populations ofDaphnia dentiferato determine the amount of investment in sexual reproduction as well as the factors associated with variation in investment in sex. To do so, we tracked host density, infections by nine different parasites, and sexual reproduction in 15 lake populations ofD. dentiferafor 3 years. Sexual reproduction was seasonal, with male and ephippial female production beginning as early as late September and generally increasing through November. However, there was substantial variation in the prevalence of sexual individuals across populations, with some populations remaining entirely asexual throughout the study period and others shifting almost entirely to sexual females and males. We found strong relationships between density, prevalence of infection, parasite species richness, and sexual reproduction in these populations. However, strong collinearity between density, parasitism, and sexual reproduction means that further work will be required to disentangle the causal mechanisms underlying these relationships.more » « less
-
Teeling, Emma (Ed.)Abstract Dissecting the link between genetic variation and adaptive phenotypes provides outstanding opportunities to understand fundamental evolutionary processes. Here, we use a museomics approach to investigate the genetic basis and evolution of winter coat coloration morphs in least weasels (Mustela nivalis), a repeated adaptation for camouflage in mammals with seasonal pelage color moults across regions with varying winter snow. Whole-genome sequence data were obtained from biological collections and mapped onto a newly assembled reference genome for the species. Sampling represented two replicate transition zones between nivalis and vulgaris coloration morphs in Europe, which typically develop white or brown winter coats, respectively. Population analyses showed that the morph distribution across transition zones is not a by-product of historical structure. Association scans linked a 200-kb genomic region to coloration morph, which was validated by genotyping museum specimens from intermorph experimental crosses. Genotyping the wild populations narrowed down the association to pigmentation gene MC1R and pinpointed a candidate amino acid change cosegregating with coloration morph. This polymorphism replaces an ancestral leucine residue by lysine at the start of the first extracellular loop of the protein in the vulgaris morph. A selective sweep signature overlapped the association region in vulgaris, suggesting that past adaptation favored winter-brown morphs and can anchor future adaptive responses to decreasing winter snow. Using biological collections as valuable resources to study natural adaptations, our study showed a new evolutionary route generating winter color variation in mammals and that seasonal camouflage can be modulated by changes at single key genes.more » « less
-
Eaton, Deren (Ed.)Abstract Color polymorphism—two or more heritable color phenotypes maintained within a single breeding population—is an extreme type of intraspecific diversity widespread across the tree of life. Color polymorphism is hypothesized to be an engine for speciation, where morph loss or divergence between distinct color morphs within a species results in the rapid evolution of new lineages, and thus, color polymorphic lineages are expected to display elevated diversification rates. Multiple species in the lizard family Lacertidae are color polymorphic, making them an ideal group to investigate the evolutionary history of this trait and its influence on macroevolution. Here, we produce a comprehensive species-level phylogeny of the lizard family Lacertidae to reconstruct the evolutionary history of color polymorphism and test if color polymorphism has been a driver of diversification. Accounting for phylogenetic uncertainty with multiple phylogenies and simulation studies, we estimate an ancient origin of color polymorphism (111 Ma) within the Lacertini tribe (subfamily Lacertinae). Color polymorphism most likely evolved few times in the Lacertidae and has been lost at a much faster rate than gained. Evolutionary transitions to color polymorphism are associated with shifts in increased net diversification rate in this family of lizards. Taken together, our empirical results support long-standing theoretical expectations that color polymorphism is a driver of diversification.[Color polymorphism; Lacertidae; state-dependent speciation extinction models; trait-dependent diversification.]more » « less
An official website of the United States government

