Abstract Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10–1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic character is imparted by slab fluids or is acquired during ascent and interaction with the surrounding mantle or crust is debated. Here we study the petrology of metasedimentary rocks from two Tertiary Aegean subduction complexes in combination with reactive transport modelling to investigate the oxidative potential of the sedimentary rocks that cover slabs. We find that the metasedimentary rocks preserve evidence for fluid-mediated redox reactions and could be highly oxidized. Furthermore, the modelling demonstrates that layers of these oxidized rocks less than about 200 m thick have the capacity to oxidize the ascending slab dehydration flux via redox reactions that remove H2, CH4and/or H2S from the fluids. These fluids can then oxidize the overlying mantle wedge at rates comparable to arc magma generation rates, primarily via reactions involving sulfur species. Oxidized metasedimentary rocks need not generate large amounts of fluid themselves but could instead oxidize slab dehydration fluids ascending through them. Proposed Phanerozoic increases in arc magma oxygen fugacity may reflect the recycling of oxidative weathering products following Neoproterozoic–Palaeozoic marine and atmospheric oxygenation.
more »
« less
Carbon flux and alkaline volcanism: Evidence from carbonatite-like carbonate minerals in trachytes, Ulleung Island, South Korea
Abstract Carbon flux metasomatism in the subduction environment is an important process, but it remains poorly understood. The paucity of exposed lower crust and upper mantle rocks in continental arcs renders xenoliths a major target for studying the slab-derived carbon cycle. This study of the carbonate phases in volcanic rocks from three drill cores in Ulleung Island, South Korea, sheds light on the interaction of carbon flux in the upper mantle and lower crust in a back-arc setting. The volcanic rocks from Ulleung Island range in composition from trachybasalt to trachyte and contain abundant euhedral pseudomorphic carbonate grains, ulvöspinel-hosted and biotite-hosted carbonate-silicate melt inclusions, and irregular carbonate globules. Integrated petrographic and geochemical studies of a variety of phenocrysts, carbonate phases, and carbonate-silicate inclusions in biotite and ulvöspinel indicate that recharging of carbon flux affected magma evolution. Carbon and oxygen isotopes of the pseudomorphic carbonate grains overlap with mantle values, indicating a carbonatite-like origin of the carbonate phases. The (MgO, FeO, CaO)-rich silicates in ulvöspinel-hosted silicate inclusions and pseudomorphic carbonate grains likely represent a primary melt, which formed from the partial melting of carbonated eclogite of the subducted slab within the mantle wedge beneath Ulleung Island. A petrogenetic model is proposed to illustrate that the crystal mush in the magma chamber was intruded by carbonate-rich liquids and caused alteration of cumulate crystals to generate the euhedral pseudomorphic carbonate grains. The extrusive magma captured those pseudomorphic grains and erupted to form the trachybasalt-trachyte units. The observed carbonate phases and their geochemical characteristics indicate that carbon flux metasomatism played a fundamental role in this back-arc magmatism.
more »
« less
- Award ID(s):
- 1942042
- PAR ID:
- 10353840
- Date Published:
- Journal Name:
- American Mineralogist
- Volume:
- 107
- Issue:
- 9
- ISSN:
- 0003-004X
- Page Range / eLocation ID:
- 1717 to 1735
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Arc magmas are produced from the mantle wedge, with possible addition of fluids and melts derived from serpentinites and sediments in the subducting slab. Identification of various sources and their relevant contributions to such magmas is challenging; in particular, at continental arcs where crustal assimilation may overprint initial geochemical signatures. This study presents oxygen isotopic compositions of zoned olivine grains from post-caldera basalts and boron contents and isotopes of these basalts and glassy melt inclusions hosted in quartz and clinopyroxene of silicic tuffs in the Toba volcanic system, Indonesia. High-magnesian (≥87 mol% Fo [forsterite]) cores of olivine in the basalts have δ18O values ranging from 5.12‰ to 6.14‰, indicating that the mantle source underneath Toba is variably enriched in 18O. Olivine with <87 mol% Fo has highly variable (4.8–7.2‰), but overall increased, δ18O values, interpreted to reflect assimilation of high δ18O crustal materials during fractional crystallization. Mass balance calculations constrain the overall volume of crustal assimilation for the basalts as ≤13%. The processes responsible for the 18O-enriched basaltic melts are further constrained by boron data that indicate the addition of <0.1 wt% fluids to the mantle, >40% of the fluids being derived from serpentinites and others from altered oceanic crust and sediments. This amount of fluids can increase δ18O of the magma by only ~0.02‰. Approximately 6–9% sediment-derived melt hybridization in the mantle wedge is further needed to yield basaltic melts with δ18O values in equilibrium with those of the high-Fo olivine cores. The cogenetic silicic tuffs, on the other hand, seem to record a higher proportion of fluid addition dominated by sediment-derived fluids to the mantle source, in addition to crustal assimilation. Our reconnaissance study therefore demonstrates the application of combined B and O isotopes to differentiate between melts and fluids derived from serpentinites and sediments in the subducted slab—an application that can be applied to arc magmas worldwide.more » « less
-
Abstract We investigated the state of the arc background mantle (i.e. mantle wedge without slab component) by means of olivine CaO and its Cr-spinel inclusions in a series of high-Mg# volcanic rocks from the Quaternary Trans-Mexican Volcanic Belt. Olivine CaO was paired with the Cr# [molar Cr/(Cr + Al) *100] of Cr-spinel inclusions, and 337 olivine+Cr-spinel pairs were obtained from 33 calc-alkaline, high-K and OIB-type arc front volcanic rocks, and three monogenetic rear-arc basalts that lack subduction signatures. Olivine+Cr-spinels display coherent elemental and He–O isotopic systematics that contrast with the compositional diversity of the bulk rocks. All arc front olivines have low CaO (0.135 ± 0.029 wt %) relative to rear-arc olivines which have the higher CaO (0.248 ± 0.028 wt %) of olivines from mid-ocean ridge basalts. Olivine 3He/4He–δ18O isotope systematics confirm that the olivine+Cr-spinels are not, or negligibly, affected by crustal basement contamination, and thus preserve compositional characteristics of primary arc magmas. Variations in melt H2O contents in the arc front series and the decoupling of olivine CaO and Ni are inconsistent with controls on the olivine CaO by melt water and/or secondary mantle pyroxenites. Instead, we propose that low olivine CaO reflects the typical low melt CaO of high-Mg# arc magmas erupting through thick crust. We interpret the inverse correlation of olivine CaO and Cr-spinel Cr# over a broad range of Cr# (~10–70) as co-variations of CaO, Al and Cr of their (near) primary host melts, which derived from a mantle that has been variably depleted by slab-flux driven serial melt extraction. Our results obviate the need for advecting depleted residual mantle from rear- and back-arc region, but do not upset the larger underlying global variations of melt CaO high-Mg# arc magmas worldwide, despite leading to considerable regional variations of melt CaO at the arc front of the Trans-Mexican Volcanic Belt.more » « less
-
Abstract The redox state of arc mantle has been considered to be more oxidized and diverse than that of the mid-ocean ridge, but the cause of the variation is debated. We examine the redox state of the Cenozoic global arc mantle by compiling measured/calculatedfO2of olivine-hosted melt inclusions from arc magma and modeledfO2based on V/Sc and Cu/Zr ratios of arc basaltic rocks. The results indicate that the redox state of Cenozoic arc mantle is latitude dependent, with less oxidized arc mantle in the low latitudes, contrasting with a near constant across-latitude trend in the mid-ocean ridges. We propose that such a latitude-dependent pattern in the arc mantle may be controlled by the variation in the redox state of subducted sediment, possibly related to a latitudinal variation in the primary production of phytoplankton, which results in more organic carbon and sulfide deposited on the low-latitude ocean floor. Our findings provide evidence for the impact of the surface environment on Earth’s upper mantle.more » « less
-
null (Ed.)Abstract Water is transported to Earth's interior in lithospheric slabs at subduction zones. Shallow dehydration fuels hydrous island arc magmatism but some water is transported deeper in cool slab mantle. Further dehydration at ∼700 km may limit deeper transport but hydrated phases in slab crust have considerable capacity for transporting water to the core-mantle boundary. Quantifying how much remains the challenge.more » « less
An official website of the United States government

