skip to main content


Title: An Explosophore-Based Approach Towards the Prediction of Energetic Material Sensitivity Properties
Accurate prediction of the sensitivity properties of high-energy materials (HEMs) and the study of their decomposition mechanisms are two major focuses within energetics research. Due to the hazards associated with the synthesis and handling of energetic materials, predictive models for HEM sensitivity are of great importance in enabling the safe and efficient development of future HEMs. Traditional predictive modeling of HEM decomposition via machine learning algorithms generally displays limited interpretability, while mechanistic studies of HEMs typically focus on small subsets of structurally analogous compounds lacking generalizability. This study aims to bridge the gap between predictive modeling and computational mechanistic analysis of HEMs, with the goal of providing chemically interpretable models for HEM sensitivity property prediction. Herein, we disclose the use of multivariate linear regression (MLR) modeling for the prediction of the decomposition temperature and impact sensitivity of HEMs. We report an explosophore-based approach to sensitivity property prediction featuring an ensemble of quantum mechanical parameters and computational workflows that enable rapid parameterization and modeling of energetic functional groups. We then employ these methods to accurately predict sensitivity properties of nitrogen-rich tetrazole and azide HEMs. These statistical MLR models are readily interpreted based on the principles of physical organic chemistry, producing structure-property relationships to guide the rational design of new HEMs. Furthermore, we extend our explosophore-based approach to predict the sensitivity properties of HEMs containing multiple, non-equivalent energetic functional groups through the identification of molecular triggers for the bulk decomposition of HEMs. Finally, we showcase the viability of our methods towards ab initio virtual screening of HEMs through predictive modeling of external test sets of tetrazole HEMs using structures and parameters generated exclusively in silico.  more » « less
Award ID(s):
1763436
NSF-PAR ID:
10353884
Author(s) / Creator(s):
Date Published:
Journal Name:
ChemRxiv
ISSN:
2573-2293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nitrogen atom‐rich heterocycles and organic azides have found extensive use in many sectors of modern chemistry from drug discovery to energetic materials. The prediction and understanding of their energetic properties are thus key to the safe and effective application of these compounds. In this work, we disclose the use of multivariate linear regression modeling for the prediction of the decomposition temperature and impact sensitivity of structurally diverse tetrazoles and organic azides. We report a data‐driven approach for property prediction featuring a collection of quantum mechanical parameters and computational workflows. The statistical models reported herein carry predictive accuracy as well as chemical interpretability. Model validation was successfully accomplished via tetrazole test sets with parameters generated exclusively in silico. Mechanistic analysis of the statistical models indicated distinct divergent pathways of thermal and impact‐initiated decomposition.

     
    more » « less
  2. Abstract

    Nitrogen atom‐rich heterocycles and organic azides have found extensive use in many sectors of modern chemistry from drug discovery to energetic materials. The prediction and understanding of their energetic properties are thus key to the safe and effective application of these compounds. In this work, we disclose the use of multivariate linear regression modeling for the prediction of the decomposition temperature and impact sensitivity of structurally diverse tetrazoles and organic azides. We report a data‐driven approach for property prediction featuring a collection of quantum mechanical parameters and computational workflows. The statistical models reported herein carry predictive accuracy as well as chemical interpretability. Model validation was successfully accomplished via tetrazole test sets with parameters generated exclusively in silico. Mechanistic analysis of the statistical models indicated distinct divergent pathways of thermal and impact‐initiated decomposition.

     
    more » « less
  3. Tetrazoles are well known for their high positive enthalpy of formation which makes them attractive as propellants, explosives, and energetic materials. As a step towards a deeper understanding of the stability of benziodazolotetrazole (BIAT)-based materials compared to their benziodoxole (BIO) counterparts, we investigated in this work electronic structure features and bonding properties of two monovalent iodine precursors: 2-iodobenzoic acid and 5-(2-iodophenyl)tetrazole and eight hypervalent iodine (III) compounds: I-hydroxybenzidoxolone, I-methoxybenziodoxolone, I-ethoxybenziodoxolone, I-iso-propoxybenziodoxolone and the corresponding I-hydroxyben ziodazolotetrazole, I-methoxybenziodazolotetrazole, I-ethoxybenziodazolotetrazole and I-iso- propoxybenziodazolotetrazole. As an efficient tool for the interpretation of the experimental IR spectra and for the quantitative assessment of the I−C, I−N, and I−O bond strengths in these compounds reflecting substituent effects, we used the local vibrational mode analysis, originally introduced by Konkoli and Cremer, complemented by electron density and natural bond orbital analyses. Based on the hypothesis that stronger bonds correlate with increased stability, we predict that, for both series, i.e., substituted benziodoxoles and benziodazolotetrazoles, the stability increases as follows: I-iso-propoxy < I-ethoxy < I-methoxy < I-hydroxy. In particular, the I−N bonds in the benziodazolotetrazoles could be identified as the so-called trigger bonds being responsible for the initiation of explosive decomposition in benziodazolotetrazoles. The new insight gained by this work will allow for the design of new benziodazolotetrazole materials with controlled performance or stability based on the modulation of the iodine bonds with its three ligands. The local mode analysis can serve as an effective tool to monitor the bond strengths, in particular to identify potential trigger bonds. We hope that this article will foster future collaboration between the experimental and computational community being engaged in vibrational spectroscopy. 
    more » « less
  4. Microstructure-sensitive material design has become popular among materials engineering researchers in the last decade because it allows the control of material performance through the design of microstructures. In this study, the microstructure is defined by an orientation distribution function (ODF). A physics-informed machine learning approach is integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of microstructure-sensitive design. When data generation is costly and numerical models need to follow certain physical laws, machine learning models that are domain-aware perform more efficiently than conventional machine learning models. Therefore, a new paradigm called Physics-Informed Neural Network (PINN) is introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design to explore the material behavior under deformation processing. In particular, we demonstrate the application of PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture evolution of Copper during a tensile deformation process as a function of initial texturing and strain rate. The second problem aims to calibrate the crystal plasticity parameters of Ti-7Al alloy by solving an inverse design problem to match PINN-predicted final texture prediction and the experimental data. 
    more » « less
  5. Abstract Objective

    This study aims to establish an informative dynamic prediction model of treatment outcomes using follow-up records of tuberculosis (TB) patients, which can timely detect cases when the current treatment plan may not be effective.

    Materials and Methods

    We used 122 267 follow-up records from 17 958 new cases of pulmonary TB in the Republic of Moldova. A dynamic prediction framework integrating landmark modeling and machine learning algorithms was designed to predict patient outcomes during the course of treatment. Sensitivity and positive predictive value (PPV) were calculated to evaluate performance of the model at critical time points. New measures were defined to determine when follow-up laboratory tests should be conducted to obtain most informative results.

    Results

    The random-forest algorithm performed better than support vector machine and penalized multinomial logistic regression models for predicting TB treatment outcomes. For all 3 outcome classes (ie, cured, not cured, and died after 24 months following treatment initiation), sensitivity and PPV of prediction models improved as more follow-up information was collected. Specifically, sensitivity and PPV increased from 0.55 to 0.84 and from 0.32 to 0.88, respectively, for the not cured class.

    Conclusion

    The dynamic prediction framework utilizes longitudinal laboratory test results to predict patient outcomes at various landmarks. Sputum culture and smear results are among the important variables for prediction; however, the most recent sputum result is not always the most informative one. This framework can potentially facilitate a more effective treatment monitoring program and provide insights for policymakers toward improved guidelines on follow-up tests.

     
    more » « less