skip to main content


Title: Influence of a Socially Assistive Robot on Physical Activity, Social Play Behavior, and Toy-Use Behaviors of Children in a Free Play Environment: A Within-Subjects Study
Background: Play is critical for children’s physical, cognitive, and social development. Technology-based toys like robots are especially of interest to children. This pilot study explores the affordances of the play area provided by developmentally appropriate toys and a mobile socially assistive robot (SAR). The objective of this study is to assess the role of the SAR on physical activity, play behavior, and toy-use behavior of children during free play. Methods: Six children (5 females, M age = 3.6 ± 1.9 years) participated in the majority of our pilot study’s seven 30-minute-long weekly play sessions (4 baseline and 3 intervention). During baseline sessions, the SAR was powered off. During intervention sessions, the SAR was teleoperated to move in the play area and offered rewards of lights, sounds, and bubbles to children. Thirty-minute videos of the play sessions were annotated using a momentary time sampling observation system. Mean percentage of time spent in behaviors of interest in baseline and intervention sessions were calculated. Paired-Wilcoxon signed rank tests were conducted to assess differences between baseline and intervention sessions. Results: There was a significant increase in children’s standing (∼15%; Z = −2.09; p = 0.037) and a tendency for less time sitting (∼19%; Z = −1.89; p = 0.059) in the intervention phase as compared to the baseline phase. There was also a significant decrease (∼4.5%, Z = −2.70; p = 0.007) in peer interaction play and a tendency for greater (∼4.5%, Z = −1.89; p = 0.059) interaction with adults in the intervention phase as compared to the baseline phase. There was a significant increase in children’s interaction with the robot (∼11.5%, Z = −2.52; p = 0.012) in the intervention phase as compared to the baseline phase. Conclusion: These results may indicate that a mobile SAR provides affordances through rewards that elicit children’s interaction with the SAR and more time standing in free play. This pilot study lays a foundation for exploring the role of SARs in inclusive play environments for children with and without mobility disabilities in real-world settings like day-care centers and preschools.  more » « less
Award ID(s):
2024950
NSF-PAR ID:
10353936
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Robotics and AI
Volume:
8
ISSN:
2296-9144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When young children create, they are exploring their emerging skills. And when young children reflect, they are transforming their learning experiences. Yet early childhood play environments often lack toys and tools to scaffold reflection. In this work, we design a stuffed animal robot to converse with young children and prompt creative reflection through open-ended storytelling. We also contribute six design goals for child-robot interaction design. In a hybrid Wizard of Oz study, 33 children ages 4-5 years old across 10 U.S. states engaged in creative play then conversed with a stuffed animal robot to tell a story about their creation. By analyzing children’s story transcripts, we discover four approaches that young children use when responding to the robot’s reflective prompting: Imaginative, Narrative Recall, Process-Oriented, and Descriptive Labeling. Across these approaches, we find that open-ended child-robot interaction can integrate personally meaningful reflective storytelling into diverse creative play practices. 
    more » « less
  2. null (Ed.)
    Childhood ambulatory disabilities detract from not only the physical development, but also the social engagement of young children. Commercial mobility aids can help improve the autonomy of children with disabilities, but affordability issues, policy challenges, and uncertainty about training standards limit early use of these devices. In this paper, we build on affordable research-grade mobility aids for young children and consider how to design and evaluate an assistive robot that can support the use of these devices. With young children’s contingency learning abilities in mind, we designed an assistive mobile robot capable of supplying age-appropriate light, sound, and bubble rewards. We conducted a first evaluation of the robot’s ability to support driving practice with N = 5 typically developing infants. The results indicate mixed success of the robot rewards; driving distances uniformly tended to fall over the course of the study, but children did tend to look at the robot. In a second exploratory study involving N = 6 children in free ambulatory play, we see clearer differences in gaze and behavior from the introduction of an assistive robot. Generally, this research can inform others interested in assistive robotic interventions for young children. 
    more » « less
  3. The purpose of this study was to explore how kindergarten students (aged 5–6 years) engaged with mathematics as they learned programming with robot coding toys. We video-recorded 16 teaching sessions of kindergarten students’ (N = 36) mathematical and programming activities. Students worked in small groups (4–5 students) with robot coding toys on the floor in their classrooms, solving tasks that involved programming these toys to move to various locations on a grid. Drawing on a semiotic mediation perspective, we analyzed video data to identify the mathematics concepts and skills students demonstrated and the overlapping mathematics-programming knowledge exhibited by the students during these programming tasks. We found that kindergarten children used spatial, measurement, and number knowledge, and the design of the tasks, affordances of the robots, and types of programming knowledge influenced how the students engaged with mathematics. The paper concludes with a discussion about the intersections of mathematics and programming knowledge in early childhood, and how programming robot toys elicited opportunities for students to engage with mathematics in dynamic and interconnected ways, thus creating an entry point to reassert mathematics beyond the traditional school content and curriculum. 
    more » « less
  4. null (Ed.)
    Here, we observed 3- to 4-year-old children ( N =31) and their parents playing with puzzles at home during a zoom session to provide insight into the variability of the kinds of puzzles children have in their home, and the variability in how children and their parents play with spatial toys. We observed a large amount of variability in both children and parents’ behaviors, and in the puzzles they selected. Further, we found relations between parents’ and children’s behaviors. For example, parents provided more scaffolding behaviors for younger children and parents’ persistence-focused language was related to more child attempts after failure. Altogether, the present work shows how using methods of observing children at a distance, we can gain insight into the environment in which they are developing. The results are discussed in terms of how variability in spatial toys and spatial play during naturalistic interactions can help us contextualize the conclusions we draw from lab-based studies. 
    more » « less
  5. Background

    COVID-19 has severely impacted health in vulnerable demographics. As communities transition back to in-person work, learning, and social activities, pediatric patients who are restricted to their homes due to medical conditions face unprecedented isolation. Prior to the pandemic, it was estimated that each year, over 2.5 million US children remained at home due to medical conditions. Confronting gaps in health and technical resources is central to addressing the challenges faced by children who remain at home. Having children use mobile telemedicine units (telerobots) to interact with their outside environment (eg, school and play, etc) is increasingly recognized for its potential to support children’s development. Additionally, social telerobots are emerging as a novel form of telehealth. A social telerobot is a tele-operated unit with a mobile base, 2-way audio/video capabilities, and some semiautonomous features.

    Objective

    In this paper, we aimed to provide a critical review of studies focused on the use of social telerobots for pediatric populations.

    Methods

    To examine the evidence on telerobots as a telehealth intervention, we conducted electronic and full-text searches of private and public databases in June 2010. We included studies with the pediatric personal use of interactive telehealth technologies and telerobot studies that explored effects on child development. We excluded telehealth and telerobot studies with adult (aged >18 years) participants.

    Results

    In addition to telehealth and telerobot advantages, evidence from the literature suggests 3 promising robot-mediated supports that contribute to optimal child development—belonging, competence, and autonomy. These robot-mediated supports may be leveraged for improved pediatric patient socioemotional development, well-being, and quality-of-life activities that transfer traditional developmental and behavioral experiences from organic local environments to the remote child.

    Conclusions

    This review contributes to the creation of the first pediatric telehealth taxonomy of care that includes the personal use of telehealth technologies as a compelling form of telehealth care.

     
    more » « less