- PAR ID:
- 10353971
- Date Published:
- Journal Name:
- Proceedings of the 2022 ACM Conference on Human Factors in Computing Systems (CHI 2022)
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We collected Instagram data from 150 adolescents (ages 13-21) that included 15,547 private message conversations of which 326 conversations were flagged as sexually risky by participants. Based on this data, we leveraged a human-centered machine learning approach to create sexual risk detection classifiers for youth social media conversations. Our Convolutional Neural Network (CNN) and Random Forest models outperformed in identifying sexual risks at the conversation-level (AUC=0.88), and CNN outperformed at the message-level (AUC=0.85). We also trained classifiers to detect the severity risk level (i.e., safe, low, medium-high) of a given message with CNN outperforming other models (AUC=0.88). A feature analysis yielded deeper insights into patterns found within sexually safe versus unsafe conversations. We found that contextual features (e.g., age, gender, and relationship type) and Linguistic Inquiry and Word Count (LIWC) contributed the most for accurately detecting sexual conversations that made youth feel uncomfortable or unsafe. Our analysis provides insights into the important factors and contextual features that enhance automated detection of sexual risks within youths' private conversations. As such, we make valuable contributions to the computational risk detection and adolescent online safety literature through our human-centered approach of collecting and ground truth coding private social media conversations of youth for the purpose of risk classification.more » « less
-
We conducted a study with 173 adolescents (ages 13-21), who self-reported their offline and online risk experiences and uploaded their Instagram data to our study website to flag private conversations as unsafe. Risk profiles were first created based on the survey data and then compared with the risk-flagged social media data. Five risk profiles emerged: Low Risks (51% of the participants), Medium Risks (29%), Increased Sexting (8%), Increased Self-Harm (8%), and High Risk Perpetration (4%). Overall, the profiles correlated well with the social media data with the highest level of risk occurring in the three smallest profiles. Youth who experienced increased sexting and self-harm frequently reported engaging in unsafe sexual conversations. Meanwhile, high risk perpetration was characterized by increased violence, threats, and sales/promotion of illegal activities. A key insight from our study was that offline risk behavior sometimes manifested differently in online contexts (i.e., offline self-harm as risky online sexual interactions). Our findings highlight the need for targeted risk prevention strategies for youth online safety.
-
Instagram, one of the most popular social media platforms among youth, has recently come under scrutiny for potentially being harmful to the safety and well-being of our younger generations. Automated approaches for risk detection may be one way to help mitigate some of these risks if such algorithms are both accurate and contextual to the types of online harms youth face on social media platforms. However, the imminent switch by Instagram to end-to-end encryption for private conversations will limit the type of data that will be available to the platform to detect and mitigate such risks. In this paper, we investigate which indicators are most helpful in automatically detecting risk in Instagram private conversations, with an eye on high-level metadata, which will still be available in the scenario of end-to-end encryption. Toward this end, we collected Instagram data from 172 youth (ages 13-21) and asked them to identify private message conversations that made them feel uncomfortable or unsafe. Our participants risk-flagged 28,725 conversations that contained 4,181,970 direct messages, including textual posts and images. Based on this rich and multimodal dataset, we tested multiple feature sets (metadata, linguistic cues, and image features) and trained classifiers to detect risky conversations. Overall, we found that the metadata features (e.g., conversation length, a proxy for participant engagement) were the best predictors of risky conversations. However, for distinguishing between risk types, the different linguistic and media cues were the best predictors. Based on our findings, we provide design implications for AI risk detection systems in the presence of end-to-end encryption. More broadly, our work contributes to the literature on adolescent online safety by moving toward more robust solutions for risk detection that directly takes into account the lived risk experiences of youth.more » « less
-
We extend the learning from demonstration paradigm by providing a method for learning unknown constraints shared across tasks, using demonstrations of the tasks, their cost functions, and knowledge of the system dynamics and control constraints. Given safe demonstrations, our method uses hit-and-run sampling to obtain lower cost, and thus unsafe, trajectories. Both safe and unsafe trajectories are used to obtain a consistent representation of the unsafe set via solving an integer program. Our method generalizes across system dynamics and learns a guaranteed subset of the constraint. In addition, by leveraging a known parameterization of the constraint, we modify our method to learn parametric constraints in high dimensions. We also provide theoretical analysis on what subset of the constraint and safe set can be learnable from safe demonstrations. We demonstrate our method on linear and nonlinear system dynamics, show that it can be modified to work with suboptimal demonstrations, and that it can also be used to learn constraints in a feature space.more » « less
-
Although youth increasingly communicate with peers online, we know little about how private online channels play a role in providing a supportive environment for youth. To fill this gap, we asked youth to donate their Instagram Direct Messages and filtered them by the phrase “help me.” From this query, we analyzed 82 conversations comprised of 336,760 messages that 42 participants donated. These threads often began as casual conversations among friends or lovers they met offline or online. The conversations evolved into sharing negative experiences about everyday stress (e.g., school, dating) to severe mental health disclosures (e.g., suicide). Disclosures were usually reciprocated with relatable experiences and positive peer support. We also discovered unsupport as a theme, where conversation members denied giving support, a unique finding in the online social support literature. We discuss the role of social media-based private channels and their implications for design in supporting youth’s mental health. Content Warning: This paper includes sensitive topics, including self-harm and suicide ideation. Reader discretion is advised.more » « less