skip to main content


Title: Keeping it cool to take the heat: tropical lizards have greater thermal tolerance in less disturbed habitats
Global climate change has profound effects on species, especially those in habitats already altered by humans. Tropical ectotherms are predicted to be at high risk from global temperature increases, particularly those adapted to cooler temperatures at higher altitudes. We investigated how one such species, the water anole (Anolis aquaticus), is affected by temperature stress similar to that of a warming climate across a gradient of human-altered habitats at high elevation sites. We conducted a field survey on thermal traits and measured lizard critical thermal maxima across the sites. From the field survey, we found that (1) lizards from the least disturbed site and (2) operative temperature models of lizards placed in the least disturbed site had lower temperatures than those from sites with histories of human disturbance. Individuals from the least disturbed site also demonstrated greater tolerance to high temperatures than those from the more disturbed sites, in both their critical thermal maxima and the time spent at high temperatures prior to reaching critical thermal maxima. Our results demonstrate within-species variability in responses to high temperatures, depending on habitat type, and provide insight into how tropical reptiles may fare in a warming world.  more » « less
Award ID(s):
1712757
NSF-PAR ID:
10354029
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Oecologia
ISSN:
0029-8549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog,Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater meanTbandTprefthan those from forests. In contrast,CTmaxandTSMdid not differ significantly between habitats. However,CTmaxdid increase moderately with increasingTb, suggesting that changes inCTmaxmay be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. AlthoughO. pumilioexhibited moderate divergence inTpref,CTmaxappears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain theirTbbelow air temperatures that reach or exceedCTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming.

    Abstract in Spanish is available with online material.

     
    more » « less
  2. Rudi, Knut (Ed.)
    ABSTRACT As rising temperatures threaten biodiversity across the globe, tropical ectotherms are thought to be particularly vulnerable due to their narrow thermal tolerance ranges. Nevertheless, physiology-based models highlighting the vulnerability of tropical organisms rarely consider the contributions of their gut microbiota, even though microbiomes influence numerous host traits, including thermal tolerance. We combined field and lab experiments to understand the response of the slender anole lizard ( Anolis apletophallus ) gut microbiome to climatic shifts of various magnitude and duration. First, to examine the effects of long-term climate warming in the wild, we transplanted lizards from the mainland Panama to a series of warmer islands in the Panama Canal and compared their gut microbiome compositions after three generations of divergence. Next, we mimicked the effects of a short-term “heat-wave” by using a greenhouse experiment and explored the link between gut microbiome composition and lizard thermal physiology. Finally, we examined variation in gut microbiomes in our mainland population in the years both before and after a naturally occurring drought. Our results suggest that slender anole microbiomes are surprisingly resilient to short-term warming. However, both the taxonomic and predicted functional compositions of the gut microbiome varied by sampling year across all sites, suggesting that the drought may have had a regional effect. We provide evidence that short-term heat waves may not substantially affect the gut microbiota, while more sustained climate anomalies may have effects at broad geographic scales. IMPORTANCE As climate change progresses, it is crucial to understand how animals will respond to shifts in their local environments. One component of this response involves changes in the microbial communities living in and on host organisms. These “microbiomes” can affect many processes that contribute to host health and survival, yet few studies have measured changes in the microbiomes of wild organisms experiencing novel climatic conditions. We examined the effects of shifting climates on the gut microbiome of the slender anole lizard ( Anolis apletophallus ) by using a combination of field and laboratory studies, including transplants to warm islands in the Panama Canal. We found that slender anole microbiomes remain stable in response to short-term warming but may be sensitive to sustained climate anomalies, such as droughts. We discuss the significance of these findings for a species that is considered highly vulnerable to climate change. 
    more » « less
  3. Abstract

    Behavioral thermoregulation is an efficient mechanism to buffer the physiological effects of climate change. Thermal ecology studies have traditionally tested how thermal constraints shape thermoregulatory behaviors without accounting for the potential major effects of landscape structure and water availability. Thus, we lack a general understanding of the multifactorial determinants of thermoregulatory behaviors in natural populations. In this study, we quantified the relative contribution of elevation, thermal gradient, moisture gradient, and landscape structure in explaining geographic variation in thermoregulation strategies of a terrestrial ectotherm species. We measured field‐active body temperature, thermal preferences, and operative environmental temperatures to calculate thermoregulation indices, including thermal quality of the habitat and thermoregulation efficiency for a very large sample of common lizards (Zootoca vivipara) from 21 populations over 3 yr across the Massif Central mountain range in France. We used an information‐theoretic approach to compare eight a priori thermo‐hydroregulation hypotheses predicting how behavioral thermoregulation should respond to environmental conditions. Environmental characteristics exerted little influence on thermal preference with the exception that females from habitats with permanent access to water had lower thermal preferences. Field body temperatures and accuracy of thermoregulation were best predicted by the interaction between air temperature and a moisture index. In mesic environments, field body temperature and thermoregulation accuracy increased with air temperature, but they decreased in drier habitats. Thermoregulation efficiency (difference between thermoregulation inaccuracy and the thermal quality of the habitat) was maximized in cooler and more humid environments and was mostly influenced by the thermal quality of the habitat. Our study highlights complex patterns of variation in thermoregulation strategies, which are mostly explained by the interaction between temperature and water availability, independent of the elevation gradient or thermal heterogeneity. Although changes in landscape structure were expected to be the main driver of extinction rate of temperate zone ectotherms with ongoing global change, we conclude that changes in water availability coupled with rising temperatures might have a drastic impact on the population dynamics of some ectotherm species.

     
    more » « less
  4. Abstract

    The urban heat island effect, where urban areas exhibit higher temperatures than less‐developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanization influences the ability of organisms to live in cities. Ectotherms are sensitive to environmental changes that affect thermal conditions, and therefore, increased urban temperatures may pose significant challenges to thermoregulation and alter temperature‐dependent activity. To evaluate whether these changes to the thermal environment affect the persistence and dispersal of ectothermic species in urban areas, we studied two species ofAnolislizards (Anolis cristatellusandAnolis sagrei) introduced to Miami‐Dade County, FL, USA, where they occur in both urban and natural habitats. We calculated canopy openness and measured operative temperature (Te), which estimates the distribution of body temperatures in a non‐thermoregulating population, in four urban and four natural sites. We also captured lizards throughout the day and recorded their internal body temperature (Tb). We found that urban areas had more open canopies and higherTecompared to natural habitats. Laboratory trials showed thatA. cristatelluspreferred lower temperatures thanA. sagrei. Urban sites currently occupied by each species appear to lower thermoregulatory costs for both species, but onlyA. sagreihad fieldTbthat were more often within their preferred temperature range in urban habitats compared to natural areas. Furthermore, based on availableTewithin each species' preferred temperature range, urban sites with onlyA. sagreiappear less suitable forA. cristatellus, whereas natural sites with onlyA. cristatellusare less suitable forA. sagrei. These results highlight how the thermal properties of urban areas contribute to patterns of persistence and dispersal, particularly relevant for studying species invasions worldwide.

     
    more » « less
  5. Abstract

    Across the globe, temperatures are predicted to increase with consequences for many taxonomic groups. Arthropods are particularly at risk as temperature imposes physiological constraints on growth, survival, and reproduction. Given that arthropods may be disproportionately affected in a warmer climate—the question becomes which taxa are vulnerable and can we predict the supposed winners and losers of climate change? To address this question, we resurveyed 33 ant communities, quantifying 20‐yr differences in the incidence of 28 genera. Each North American ant community was surveyed with 30 1‐m2plots, and the incidence of each genus across the 30 plots was used to estimate change. From the original surveys in 1994–1997 to the resurveys in 2016–2017, temperature increased on average 1°C (range, −0.4°C to 2.5°C) and ~64% of ant genera increased in more than half of the sampled communities. To test Thermal Performance Theory's prediction that genera with higher average thermal limits will tend to accumulate at the expense of those with lower limits, we quantified critical thermal maxima (CTmax: the high temperatures at which they lose muscle control) and minima (CTmin: the low temperatures at which ants first become inactive) for common genera at each site. Consistent with prediction, we found a positive decelerating relationship between CTmaxand the proportion of sites in which a genus had increased. CTmin, by contrast, was not a useful predictor of change. There was a strong positive correlation (r = 0.85) between the proportion of sites where a genus was found with higher incidence after 20 yr and the average difference in number of plots occupied per site, suggesting genera with high CTmaxvalues tended to occupy more plots at more sites after 20 yr. Thermal functional traits like CTmaxhave thus proved useful in predicting patterns of long‐term community change in a dominant, diverse insect taxon.

     
    more » « less