skip to main content

Title: Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome
ABSTRACT Microorganisms must respond to environmental changes to survive, often by controlling transcription initiation. Intermittent aeration during wastewater treatment presents a cyclically changing environment to which microorganisms must react. We used an intermittently aerated bioreactor performing partial nitritation and anammox (PNA) to investigate how the microbiome responds to recurring change. Meta-transcriptomic analysis revealed a dramatic disconnect between the relative DNA abundance and gene expression within the metagenome-assembled genomes (MAGs) of community members, suggesting the importance of transcriptional regulation in this microbiome. To explore how community members responded to cyclic aeration via transcriptional regulation, we searched for homologs of the catabolite repressor protein/fumarate and nitrate reductase regulatory protein (CRP/FNR) family of transcription factors (TFs) within the MAGs. Using phylogenetic analyses, evaluation of sequence conservation in important amino acid residues, and prediction of genes regulated by TFs in the MAGs, we identified homologs of the oxygen-sensing FNR in Nitrosomonas and Rhodocyclaceae , nitrogen-sensing dissimilative nitrate respiration regulator that responds to nitrogen species (DNR) in Rhodocyclaceae , and nitrogen-sensing nitrite and nitric oxide reductase regulator that responds to nitrogen species (NnrR) in Nitrospira MAGs. Our data also predict that CRP/FNR homologs in Ignavibacteria , Flavobacteriales , and Saprospiraceae MAGs sense carbon availability. In more » addition, a CRP/FNR homolog in a Brocadia MAG was most closely related to CRP TFs known to sense carbon sources in well-studied organisms. However, we predict that in autotrophic Brocadia , this TF most likely regulates a diverse set of functions, including a response to stress during the cyclic aerobic/anoxic conditions. Overall, this analysis allowed us to define a meta-regulon of the PNA microbiome that explains functions and interactions of the most active community members. IMPORTANCE Microbiomes are important contributors to many ecosystems, including ones where nutrient cycling is stimulated by aeration control. Optimizing cyclic aeration helps reduce energy needs and maximize microbiome performance during wastewater treatment; however, little is known about how most microbial community members respond to these alternating conditions. We defined the meta-regulon of a PNA microbiome by combining existing knowledge of how the CRP/FNR family of bacterial TFs respond to stimuli, with metatranscriptomic analyses to characterize gene expression changes during aeration cycles. Our results indicated that, for some members of the community, prior knowledge is sufficient for high-confidence assignments of TF function, whereas other community members have CRP/FNR TFs for which inferences of function are limited by lack of prior knowledge. This study provides a framework to begin elucidating meta-regulons in microbiomes, where pure cultures are not available for traditional transcriptional regulation studies. Defining the meta-regulon can help in optimizing microbiome performance. « less
; ; ; ; ;
Lindemann, Stephen R.
Award ID(s):
1803055 1435661
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Mitchell, Aaron P. (Ed.)
    Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A . fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A . fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A . fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis -thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A . nidulans . However, the A . nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A . fumigatus and A . nidulans , two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A . fumigatus andmore »A . nidulans . However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A . fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae , was also essential for virulence and GT biosynthesis in A . fumigatus , and for GT protection in A . fumigatus , A . nidulans , and A . oryzae . KojR regulates rglT , gliT , gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.« less
  2. Abstract Background

    Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities.


    In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass,Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome ofAndropogon gerardiiunder drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest – MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas,which might be associated with enhanced drought tolerance and growth forAndropogon gerardii.


    Our data indicated thatmore »the metagenome-assembled MAG-Pseudomonashas the functional potential to contribute to the plant host’s growth during stressful conditions. Our study also suggested the nitrogen transformation potential ofMAG-Pseudomonasthat could impactAndropogon gerardiigrowth in a positive way. The cultivation of MAG-Pseudomonassets the foundation to construct a successful synthetic community forAndropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonascould place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonasand its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.

    « less
  3. Plasticity in multicellular organisms involves signaling pathways converting contexts—either natural environmental challenges or laboratory perturbations—into context-specific changes in gene expression. Congruently, the interactions between the signaling molecules and transcription factors (TF) regulating these responses are also context specific. However, when a target gene responds across contexts, the upstream TF identified in one context is often inferred to regulate it across contexts. Reconciling these stable TF–target gene pair inferences with the context-specific nature of homeostatic responses is therefore needed. The induction of the Caenorhabditis elegans genes lipl-3 and lipl-4 is observed in many genetic contexts and is essential to survival during fasting. We find DAF-16/FOXO mediating lipl-4 induction in all contexts tested; hence, lipl-4 regulation seems context independent and compatible with across-context inferences. In contrast, DAF-16–mediated regulation of lipl-3 is context specific. DAF-16 reduces the induction of lipl-3 during fasting, yet it promotes it during oxidative stress. Through discrete dynamic modeling and genetic epistasis, we define that DAF-16 represses HLH-30/TFEB—the main TF activating lipl-3 during fasting. Contrastingly, DAF-16 activates the stress-responsive TF HSF-1 during oxidative stress, which promotes C. elegans survival through induction of lipl-3 . Furthermore, the TF MXL-3 contributes to the dominance of HSF-1 at the expense of HLH-30more »during oxidative stress but not during fasting. This study shows how context-specific diverting of functional interactions within a molecular network allows cells to specifically respond to a large number of contexts with a limited number of molecular players, a mode of transcriptional regulation we name “contextualized transcription.”« less
  4. Abstract

    Identification of transcription factor binding sites (TFBSs) is essential to understanding of gene regulation. Designing computational models for accurate prediction of TFBSs is crucial because it is not feasible to experimentally assay all transcription factors (TFs) in all sequenced eukaryotic genomes. Although many methods have been proposed for the identification of TFBSs in humans, methods designed for plants are comparatively underdeveloped. Here, we present PlantBind, a method for integrated prediction and interpretation of TFBSs based on DNA sequences and DNA shape profiles. Built on an attention-based multi-label deep learning framework, PlantBind not only simultaneously predicts the potential binding sites of 315 TFs, but also identifies the motifs bound by transcription factors. During the training process, this model revealed a strong similarity among TF family members with respect to target binding sequences. Trans-species prediction performance using four Zea mays TFs demonstrated the suitability of this model for transfer learning. Overall, this study provides an effective solution for identifying plant TFBSs, which will promote greater understanding of transcriptional regulatory mechanisms in plants.

  5. MrpC, a member of the CRP/Fnr superfamily of transcriptional regulators, plays a key role in coordination of the multicellular developmental program in Myxococcus xanthus. Previous reports suggest MrpC is subject to complex regulation including activation by an unusual LonD‐dependent proteolytic processing event that removes its unique N‐terminal peptide, producing the isoform MrpC2. MrpC2 is proposed to positively autoregulate and regulate transcription of hundreds of genes necessary for both the aggregation and sporulation phases of the developmental program. We demonstrate here that mrpC expression bifurcates corresponding to different cell populations within the developmental program. During our analysis of regulatory events controlling this process, we demonstrate that MrpC2 is not an active isoform; rather, the N‐terminal peptide is instead essential for MrpC function in vivo. We also demonstrate that MrpC is instead a negative autoregulator and represses its own expression by specifically competing with its enhancer binding protein, MrpB. These results provide an additional rare example of CRP/EBP coordinated regulation, and significantly revise the model for control of the central developmental transcriptional activator of the M. xanthus developmental program.