skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating unsupervised word segmentation in adults: a meta-analysis
Humans, even from infancy, are capable of unsupervised (“statistical”) learning of linguistic information. However, it remains unclear which of the myriad algorithms for unsupervised learning captures human abilities. This matters because unsupervised learning algorithms vary greatly in how much can be learned how quickly. Thus, which algorithm(s) humans use may place a strong bound on how much of language can actually be learned in an unsupervised fashion. As a step towards more precisely characterizing human unsupervised learning capabilities, we quantitatively synthesize the literature on adult unsupervised (“statistical”) word segmentation. Unfortunately, most confidence intervals were very large, and few moderators were found to be significant. These findings are consistent with prior work suggesting low power and precision in the literature. Constraining theory will require more, higher-powered studies.  more » « less
Award ID(s):
1918813
PAR ID:
10354110
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Annual Meeting of the Cognitive Science Society
Volume:
44
Issue:
44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humans, even from infancy, are capable of unsupervised (“sta- tistical”) learning of linguistic information. However, it re- mains unclear which of the myriad algorithms for unsuper- vised learning captures human abilities. This matters because unsupervised learning algorithms vary greatly in how much can be learned how quickly. Thus, which algorithm(s) humans use may place a strong bound on how much of language can ac- tually be learned in an unsupervised fashion. As a step towards more precisely characterizing human unsupervised learning capabilities, we quantitatively synthesize the literature on adult unsupervised (“statistical”) word segmentation. Unfortunately, most confidence intervals were very large, and few moderators were found to be significant. These findings are consistent with prior work suggesting low power and precision in the litera- ture. Constraining theory will require more, higher-powered studies. 
    more » « less
  2. Explaining the results of Machine learning algorithms is crucial given the rapid growth and potential applicability of these methods in critical domains including healthcare, defense, autonomous driving, etc. In this paper, we address this problem in the context of Markov Logic Networks (MLNs) which are highly expressive statistical relational models that combine first-order logic with probabilistic graphical models. MLNs in general are known to be interpretable models, i.e., MLNs can be understood more easily by humans as compared to models learned by approaches such as deep learning. However, at the same time, it is not straightforward to obtain human-understandable explanations specific to an observed inference result (e.g. marginal probability estimate). This is because, the MLN provides a lifted interpretation, one that generalizes to all possible worlds/instantiations, which are not query/evidence specific. In this paper, we extract grounded-explanations, i.e., explanations defined w.r.t specific inference queries and observed evidence. We extract these explanations from importance weights defined over the MLN formulas that encode the contribution of formulas towards the final inference results. We validate our approach in real world problems related to analyzing reviews from Yelp, and show through user-studies that our explanations are richer than state-of-the-art non-relational explainers such as LIME . 
    more » « less
  3. In recent years crowdsourcing has become the method of choice for gathering labeled training data for learning algorithms. Standard approaches to crowdsourcing view the process of acquiring labeled data separately from the process of learning a classifier from the gathered data. This can give rise to computational and statistical challenges. For example, in most cases there are no known computationally efficient learning algorithms that are robust to the high level of noise that exists in crowdsourced data, and efforts to eliminate noise through voting often require a large number of queries per example. In this paper, we show how by interleaving the process of labeling and learning, we can attain computational efficiency with much less overhead in the labeling cost. In particular, we consider the realizable setting where there exists a true target function in F and consider a pool of labelers. When a noticeable fraction of the labelers are perfect, and the rest behave arbitrarily, we show that any F that can be efficiently learned in the traditional realizable PAC model can be learned in a computationally efficient manner by querying the crowd, despite high amounts of noise in the responses. Moreover, we show that this can be done while each labeler only labels a constant number of examples and the number of labels requested per example, on average, is a constant. When no perfect labelers exist, a related task is to find a set of the labelers which are good but not perfect. We show that we can identify all good labelers, when at least the majority of labelers are good. 
    more » « less
  4. When interacting with a robot, humans form con-ceptual models (of varying quality) which capture how the robot behaves. These conceptual models form just from watching or in-teracting with the robot, with or without conscious thought. Some methods select and present robot behaviors to improve human conceptual model formation; nonetheless, these methods and HRI more broadly have not yet consulted cognitive theories of human concept learning. These validated theories offer concrete design guidance to support humans in developing conceptual models more quickly, accurately, and flexibly. Specifically, Analogical Transfer Theory and the Variation Theory of Learning have been successfully deployed in other fields, and offer new insights for the HRI community about the selection and presentation of robot behaviors. Using these theories, we review and contextualize 35 prior works in human-robot teaching and learning, and we assess how these works incorporate or omit the design implications of these theories. From this review, we identify new opportunities for algorithms and interfaces to help humans more easily learn conceptual models of robot behaviors, which in turn can help humans become more effective robot teachers and collaborators. 
    more » « less
  5. Assistive robot arms can help humans by partially automating their desired tasks. Consider an adult with motor impairments controlling an assistive robot arm to eat dinner. The robot can reduce the number of human inputs — and how precise those inputs need to be — by recognizing what the human wants (e.g., a fork) and assisting for that task (e.g., moving towards the fork). Prior research has largely focused on learning the human’s task and providing meaningful assistance. But as the robot learns and assists, we also need to ensure that the human understands the robot’s intent (e.g., does the human know the robot is reaching for a fork?). In this paper, we study the effects of communicating learned assistance from the robot back to the human operator. We do not focus on the specific interfaces used for communication. Instead, we develop experimental and theoretical models of a) how communication changes the way humans interact with assistive robot arms, and b) how robots can harness these changes to better align with the human’s intent. We first conduct online and in-person user studies where participants operate robots that provide partial assistance, and we measure how the human’s inputs change with and without communication. With communication, we find that humans are more likely to intervene when the robot incorrectly predicts their intent, and more likely to release control when the robot correctly understands their task. We then use these findings to modify an established robot learning algorithm so that the robot can correctly interpret the human’s inputs when communication is present. Our results from a second in-person user study suggest that this combination of communication and learning outperforms assistive systems that isolate either learning or communication. See videos here: https://youtu.be/BET9yuVTVU4 
    more » « less