skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rethinking the Landscape: Emerging Approaches to Archaeological Remote Sensing
An emerging arena of archaeological research is beginning to deploy remote sensing technologies—including aerial and satellite imagery, digital topographic data, and drone-acquired and terrestrial geophysical data—not only in support of conventional fieldwork but also as an independent means of exploring the archaeological landscape. This article provides a critical review of recent research that relies on an ever-growing arsenal of imagery and instruments to undertake innovative investigations: mapping regional-scale settlement histories, documenting ancient land use practices, revealing the complexity of settled spaces, building nuanced pictures of environmental contexts, and monitoring at-risk cultural heritage. At the same time, the disruptive nature of these technologies is generating complex new challenges and controversies surrounding data access and preservation, approaches to a deluge of information, and issues of ethical remote sensing. As we navigate these challenges, remote sensing technologies nonetheless offer revolutionary ways of interrogating the archaeological record and transformative insights into the human past.  more » « less
Award ID(s):
2114236
PAR ID:
10354279
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual Review of Anthropology
Volume:
50
Issue:
1
ISSN:
0084-6570
Page Range / eLocation ID:
167 to 186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While archaeologists have long understood that thermal and multi-spectral imagery can potentially reveal a wide range of ancient cultural landscape features, only recently have advances in drone and sensor technology enabled us to collect these data at sufficiently high spatial and temporal resolution for archaeological field settings. This paper presents results of a study at the Enfield Shaker Village, New Hampshire (USA), in which we collect a time-series of multi-spectral visible light, near-infrared (NIR), and thermal imagery in order to better understand the optimal contexts and environmental conditions for various sensors. We present new methods to remove noise from imagery and to combine multiple raster datasets in order to improve archaeological feature visibility. Analysis compares results of aerial imaging with ground-penetrating radar and magnetic gradiometry surveys, illustrating the complementary nature of these distinct remote sensing methods. Results demonstrate the value of high-resolution thermal and NIR imagery, as well as of multi-temporal image analysis, for the detection of archaeological features on and below the ground surface, offering an improved set of methods for the integration of these emerging technologies into archaeological field investigations. 
    more » « less
  2. null (Ed.)
    While archaeologists have long understood that thermal and multi-spectral imagery can potentially reveal a wide range of ancient cultural landscape features, only recently have advances in drone and sensor technology enabled us to collect these data at sufficiently high spatial and temporal resolution for archaeological field settings. This paper presents results of a study at the Enfield Shaker Village, New Hampshire (USA), in which we collect a time-series of multi-spectral visible light, near-infrared (NIR), and thermal imagery in order to better understand the optimal contexts and environmental conditions for various sensors. We present new methods to remove noise from imagery and to combine multiple raster datasets in order to improve archaeological feature visibility. Analysis compares results of aerial imaging with ground-penetrating radar and magnetic gradiometry surveys, illustrating the complementary nature of these distinct remote sensing methods. Results demonstrate the value of high-resolution thermal and NIR imagery, as well as of multi-temporal image analysis, for the detection of archaeological features on and below the ground surface, offering an improved set of methods for the integration of these emerging technologies into archaeological field investigations 
    more » « less
  3. Abstract The challenges of monitoring wildlife often limit the scales and intensity of the data that can be collected. New technologies—such as remote sensing using unoccupied aircraft systems (UASs)—can collect information more quickly, over larger areas, and more frequently than is feasible using ground‐based methods. While airborne imaging is increasingly used to produce data on the location and counts of individuals, its ability to produce individual‐based demographic information is less explored. Repeat airborne imagery to generate an imagery time series provides the potential to track individuals over time to collect information beyond one‐off counts, but doing so necessitates automated approaches to handle the resulting high‐frequency large‐spatial scale imagery. We developed an automated time‐series remote sensing approach to identifying wading bird nests in the Everglades ecosystem of Florida, USA to explore the feasibility and challenges of conducting time‐series based remote sensing on mobile animals at large spatial scales. We combine a computer vision model for detecting birds in weekly UAS imagery of colonies with biology‐informed algorithmic rules to generate an automated approach that identifies likely nests. Comparing the performance of these automated approaches to human review of the same imagery shows that our primary approach identifies nests with comparable performance to human review, and that a secondary approach designed to find quick‐fail nests resulted in high false‐positive rates. We also assessed the ability of both human review and our primary algorithm to find ground‐verified nests in UAS imagery and again found comparable performance, with the exception of nests that fail quickly. Our results showed that automating nest detection, a key first step toward estimating nest success, is possible in complex environments like the Everglades and we discuss a number of challenges and possible uses for these types of approaches. 
    more » « less
  4. Abstract Tropical forests are increasingly threatened by deforestation and degradation, impacting carbon storage, climate regulations and biodiversity. Restoring these ecosystems is crucial for environmental sustainability, yet monitoring these efforts poses significant challenges. Secondary forests are in a constant state of flux, with growth depending on multiple factors.Remote sensing technologies offer cost‐effective, scalable and transferable solutions, advancing forest restoration monitoring towards more accurate, efficient and real‐time data analysis and interpretation. This review provides a comprehensive evaluation of the current state and advancements in remote sensing technologies applied to monitoring tropical forest restoration.Synthesis and applications: This review brings together the state of the art of remote sensing technologies, such as very‐high‐resolution RGB imagery, multi‐ and hyperspectral imaging, lidar, radar and thermal‐infrared technologies and their applicability in monitoring forest restoration. In conclusion, this review emphasizes the potential of remote sensing technologies, coupled with advanced computational techniques, to enhance global efforts towards effective and sustainable forest restoration monitoring. 
    more » « less
  5. We are currently living in the era of big data. The volume of collected or archived geospatial data for land use and land cover (LULC) mapping including remotely sensed satellite imagery and auxiliary geospatial datasets is increasing. Innovative machine learning, deep learning algorithms, and cutting-edge cloud computing have also recently been developed. While new opportunities are provided by these geospatial big data and advanced computer technologies for LULC mapping, challenges also emerge for LULC mapping from using these geospatial big data. This article summarizes the review studies and research progress in remote sensing, machine learning, deep learning, and geospatial big data for LULC mapping since 2015. We identified the opportunities, challenges, and future directions of using geospatial big data for LULC mapping. More research needs to be performed for improved LULC mapping at large scales. 
    more » « less