skip to main content

This content will become publicly available on April 1, 2023

Title: Novel Measurement-Based Efficient Computational Approach to Modeling Optical Power Transmission in Step-Index Polymer Optical Fiber
Polymer optical fibers (POFs) are playing an important role in industrial applications nowadays due to their ease of handling and resilience to bending and environmental effects. A POF can tolerate a bending radius of less than 20 mm, it can work in environments with temperatures ranging from −55 °C to +105 °C, and its lifetime is around 20 years. In this paper, we propose a novel, rigorous, and efficient computational model to estimate the most important parameters that determine the characteristics of light propagation through a step-index polymer optical fiber (SI-POF). The model uses attenuation, diffusion, and mode group delay as functions of the propagation angle to characterize the optical power transmission in the SI-POF. Taking into consideration the mode group delay allows us to generalize the computational model to be applicable to POFs with different index profiles. In particular, we use experimental measurements of spatial distributions and frequency responses to derive accurate parameters for our SI-POF simulation model. The experimental data were measured at different fiber lengths according to the cut-back method. This method consists of taking several measurements such as frequency responses, angular intensity distributions, and optical power measurements over a long length of fiber (>100 m), then more » cutting back the fiber while maintaining the same launching conditions and repeating the measurements on the shorter lengths of fiber. The model derivation uses an objective function to minimize the differences between the experimental measurements and the simulated results. The use of the matrix exponential method (MEM) to implement the SI-POF model results in a computationally efficient model that is suitable for POF-based system-level studies. The efficiency gain is due to the independence of the calculation time with respect to the fiber length, in contrast to the classic analytical solutions of the time-dependent power flow equation. The robustness of the proposed model is validated by calculating the goodness-of-fit of the model predictions relative to experimental data. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Bimetallic plasmonic nanostructures provide composition and spatial distribution of the individual components in the nanostructure in addition to overall size and morphology as degrees of freedom for tuning near- and far-field optical responses. AgAuAg nanorods (NRs) generated through epitaxial deposition of Ag on the tips of Au bipyramids (BPs) are an important bimetallic model system whose longitudinal dipolar plasmon mode first shows a spectral blue-shift upon initial deposition of Ag on the Au BP tips followed by a red-shift after additional deposition of Ag. Here, we quantify the relative contributions from morphological and compositional effects to the far-field spectral shift of the longitudinal and vertical dipolar plasmon modes during the initial deposition of Ag and compare the near-field in Ag and AgAuAg NRs with lengths between L = 130 nm–280 nm under whitelight illumination through electromagnetic simulations. Subsequently, we experimentally characterize the near-field around AgAuAg NRs with lengths between L = 88.1–749.0 nm at a constant excitation wavelength of 1064 nm on a silicon (Si) support through scattering type near-field scanning microscopy (sNSOM). We detect Fabry–Perot resonance-like higher order multipolar plasmon resonances whose order and near-field pattern depends on the length and composition of the NRs as well as themore »refractive index of the ambient medium. We find that under oblique illumination higher order multipolar modes with an even symmetry dominate on the high refractive index Si substrate due to strong electromagnetic interactions between the NR and the substrate.« less
  2. The application areas for plastic optical fibers such as in-building or aircraft networks usually have tight power budgets and require multiple passive components. In addition, advanced modulation formats are being considered for transmission over plastic optical fibers (POFs) to increase spectral efficiency. In this scenario, there is a clear need for a flexible and dynamic system-level simulation framework for POFs that includes models of light propagation in POFs and the components that are needed to evaluate the entire system performance. Until recently, commercial simulation software either was designed specifically for single-mode glass fibers or modeled individual guided modes in multimode fibers with considerable detail, which is not adequate for large-core POFs where there are millions of propagation modes, strong mode coupling and high variability. These are some of the many challenges involved in the modeling and simulation of POF-based systems. Here, we describe how we are addressing these challenges with models based on an intensity-vs-angle representation of the multimode signal rather than one that attempts to model all the modes in the fiber. Furthermore, we present model approaches for the individual components that comprise the POF-based system and how the models have been incorporated into system-level simulations, including the commercialmore »software packages SimulinkTM and ModeSYSTM.« less
  3. This theoretical modeling and simulation paper presents designs and projected performance of an on-chip digital Fourier transform spectrometer using a thermo-optical (TO) Michelson grating interferometer operating at∼1550 and 2000 nm for silicon-on-insulator and for germanium-on-silicon technological platforms, respectively. The Michelson interferometer arms consist of two unbalanced tunable optical delay lines operating in the reflection mode. They are comprised of a cascade connection of waveguide Bragg grating resonators (WBGRs) separated by a piece of straight waveguide with lengths designed according to the spectrometer resolution requirements. The length of eachWBGRis chosen according to the Butterworth filter technique to provide one resonant spectral profile with a bandwidth twice that of the spectrometer bandwidth. A selectable optical path difference (OPD) between the arms is obtained by shifting the notch in the reflectivity spectrum along the wavelength axis by means of a low-power TO heater stripe atop the WBGR, inducing an OPD that depends on the line position of the WBGR affected by TO switching.We examined the device performances in terms of signal recostruction in the radio-frequency (RF) spectrum analysis application at 1 GHz and at 1.5 GHz of spectrometer resolution. The investigation demonstrated that high-quality spectrum reconstruction is obtained for both Lorentzian and arbitrarymore »input signals with a bandwidth up to 40 GHz. We also show that spectrum reconstruction of 100–200 GHz RF band input signals is feasible in the Ge-on-Si chips.« less
  4. We experimentally demonstrate the utilization of adaptive optics (AO) to mitigate intra-group power coupling among linearly polarized (LP) modes in a graded-index few-mode fiber (GI FMF). Generally, in this fiber, the coupling between degenerate modes inside a modal group tends to be stronger than between modes belonging to different groups. In our approach, the coupling inside theLP11group can be represented by a combination of orbital-angular-momentum (OAM) modes, such that reducing power coupling in OAM set tends to indicate the capability to reduce the coupling inside theLP11group. We employ two output OAM modesl=+1andl=−<#comment/>1as resultant linear combinations of degenerateLP11aandLP11bmodes inside theLP11group of a∼<#comment/>0.6-kmGI FMF. The power coupling is mitigated by shaping the amplitude and phase of the distorted OAM modes. Each OAM mode carries an independent 20-, 40-, or 100-Gbit/s quadrature-phase-shift-keying data stream. We measure the transmission matrix (TM) in the OAM basis withinLP11group, which is a subset of the full LP TMmore »of the FMF-based system. An inverse TM is subsequently implemented before the receiver by a spatial light modulator to mitigate the intra-modal-group power coupling. With AO mitigation, the experimental results forl=+1andl=−<#comment/>1modes show, respectively, that (i) intra-modal-group crosstalk is reduced by><#comment/>5.8dBand><#comment/>5.6dBand (ii) near-error-free bit-error-rate performance is achieved with a penalty of∼<#comment/>0.6dBand∼<#comment/>3.8dB, respectively.

    « less
  5. The application of Plastic Optical Fibers (POF) as transmission medium in avionics systems requires the introduction of a number of connections that affect both the power budget and the system bandwidth. Additionally, the use of air-gap connectors in order to avoid fiber damage by physical contact through the vibrations induces statistically variable positional shifts that add to the already large variability present in POF based systems. Therefore, it is important to incorporate connector variability to obtain realistic simulation results of the performance of POF avionics links. Our aim here is to evaluate the impact of this variability on transmission properties by using a connector model that includes lateral and longitudinal offsets and performing Monte Carlo simulations of several avionics scenarios using a POF propagation matrix framework.