 Award ID(s):
 1659299
 NSFPAR ID:
 10354464
 Date Published:
 Journal Name:
 The Australasian journal of combinatorics
 Volume:
 81
 Issue:
 3
 ISSN:
 22023518
 Page Range / eLocation ID:
 367387
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Given a graph G, the zero forcing number of G, Z(G), is the minimum cardinality of any set S of vertices of which repeated applications of the forcing rule results in all vertices being in S. The forcing rule is: if a vertex v is in S, and exactly one neighbor u of v is not in S, then u is added to S in the next iteration. Hence the failed zero forcing number of a graph was defined to be the cardinality of the largest set of vertices which fails to force all vertices in the graph. A similar property called skew zero forcing was defined so that if there is exactly one neighbor u of v is not in S, then u is added to S in the next iteration. The difference is that vertices that are not in S can force other vertices. This leads to the failed skew zero forcing number of a graph, which is denoted by F−(G). In this paper, we provide a complete characterization of all graphs with F−(G)=1. Fetcie, Jacob, and Saavedra showed that the only graphs with a failed zero forcing number of 1 are either: the union of two isolated vertices; P3; K3; or K4. In this paper, we provide a surprising result: changing the forcing rule to a skewforcing rule results in an infinite number of graphs with F−(G)=1.more » « less

For a given a graph G, the zero forcing number of G, Z(G), is the smallest cardinality of any set S of vertices on which repeated applications of the forcing rule results in all vertices being included in S. The forcing rule is as follows: if a vertex v is in S, and exactly one neighbor u of v is not in S, then u is added to S in the next iteration. The failed zero forcing number of a graph was introduced by Fetcie, Jacob, and Saavedra and was defined as the cardinality of the largest set of vertices which fails to force all vertices in the graph. In 2021, Gomez et al. proved that there were exactly 15 graphs with a failed zero forcing number of two, but their proof was complicated, requiring the analysis of many graph families. We present an “inverse” approach where we start with a set of vertices S and then see which graphs have S as a maximumsized failed zero forcing set. This results in not only a shorter proof but characterizes which graphs have a particular failed zero forcing set. In our proof, we characterize the graphs which have a failed zero forcing set S where S=2, meaning considering all simple graphs of order two as induced subgraphs. This approach also has greater potential for characterizing graphs where F(G)>2 since many general arguments on the structure of graphs are developed in this type of analysis and are applicable for failed zero forcing sets of any size.

Given a graph G, the zero forcing number of G, Z(G), is the smallest cardinality of any set S of vertices on which repeated applications of the forcing rule results in all vertices being in S. The forcing rule is: if a vertex v is in S, and exactly one neighbor u of v is not in S, then u is added to S in the next iteration. Zero forcing numbers have attracted great interest over the past 15 years and have been well studied. In this paper, we investigate the largest size of a set S that does not force all of the vertices in a graph to be in S. This quantity is known as the failed zero forcing number of a graph and will be denoted by F(G). We present new results involving this parameter. In particular, we completely characterize all graphs G where F(G)=2, solving a problem posed in 2015 by Fetcie, Jacob, and Saavedra.more » « less

Let $D=(V,A)$ be a digraph. A vertex set $K\subseteq V$ is a quasikernel of $D$ if $K$ is an independent set in $D$ and for every vertex $v\in V\setminus K$, $v$ is at most distance 2 from $K$. In 1974, Chvátal and Lovász proved that every digraph has a quasikernel. P. L. Erdős and L. A. Székely in 1976 conjectured that if every vertex of $D$ has a positive indegree, then $D$ has a quasikernel of size at most $V/2$. This conjecture is only confirmed for narrow classes of digraphs, such as semicomplete multipartite, quasitransitive, or locally semicomplete digraphs. In this note, we state a similar conjecture for all digraphs, show that the two conjectures are equivalent, and prove that both conjectures hold for a class of digraphs containing all orientations of 4colorable graphs (in particular, of all planar graphs).more » « less

We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in a 3uniform hypergraph without isolated vertex. Suppose that $H$ is a 3uniform hypergraph whose order $n$ is sufficiently large and divisible by $3$. If $H$ contains no isolated vertex and $\deg(u)+\deg(v) > \frac{2}{3}n^2\frac{8}{3}n+2$ for any two vertices $u$ and $v$ that are contained in some edge of $H$, then $H$ contains a perfect matching. This bound is tight and the (unique) extremal hyergraph is a different \emph{space barrier} from the one for the corresponding Dirac problem.more » « less