skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Renew: A Software-Defined Massive Mimo Wireless Experimentation Platform
Massive multiple-input multiple-output (mMIMO) technology uses a very large number of antennas at base stations to significantly increase efficient use of the wireless spectrum. Thus, mMIMO is considered an essential part of 5G and beyond. However, developing a scalable and reliable mMIMO system is an extremely challenging task, significantly hampering the ability of the research community to research nextgeneration networks. This "research bottleneck" motivated us to develop a deployable experimental mMIMO platform to enable research across many areas. We also envision that this platform could unleash novel collaborations between communications, computing, and machine learning researchers to completely rethink next-generation networks.  more » « less
Award ID(s):
2106993
NSF-PAR ID:
10354724
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
GetMobile: Mobile Computing and Communications
Volume:
26
Issue:
2
ISSN:
2375-0529
Page Range / eLocation ID:
12 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a novel cognitive cooperative transmission scheme by exploiting massive multiple-input multiple-output (MMIMO) and non-orthogonal multiple access (NOMA) radio technologies, which enables a macrocell network and multiple cognitive small cells to cooperate in dynamic spectrum sharing. The macrocell network is assumed to own the spectrum band and be the primary network (PN), and the small cells act as the secondary networks (SNs). The secondary access points (SAPs) of the small cells can cooperatively relay the traffic for the primary users (PUs) in the macrocell network, while concurrently accessing the PUs’ spectrum to transmit their own data opportunistically through MMIMO and NOMA. Such cooperation creates a “win-win” situation: the throughput of PUs will be significantly increased with the help of SAP relays, and the SAPs are able to use the PU’s spectrum to serve their secondary users (SUs). The interplay of these advanced radio techniques is analyzed in a systematic manner, and a framework is proposed for the joint optimization of cooperative relay selection, NOMA and MMIMO transmit power allocation, and transmission scheduling. Further, to model network-wide cooperation and competition, a two-sided matching algorithm is designed to find the stable partnership between multiple SAPs and PUs. The evaluation results demonstrate that the proposed scheme achieves significant performance gains for both primary and secondary users, compared to the baselines. 
    more » « less
  2. National Science Foundation (NSF) funded Engineering Research Centers (ERC) must complement their technical research with various education and outreach opportunities to: 1) improve and promote engineering education, both within the center and to the local community; 2) encourage and include the underrepresented populations to participate in Engineering activities; and 3) advocate communication and collaboration between industry and academia. ERCs ought to perform an adequate evaluation of their educational and outreach programs to ensure that beneficial goals are met. Each ERC has complete autonomy in conducting and reporting such evaluation. Evaluation tools used by individual ERCs are quite similar, but each ERC has designed their evaluation processes in isolation, including evaluation tools such as survey instruments, interview protocols, focus group protocols, and/or observation protocols. These isolated efforts resulted in redundant resources spent and lacking outcome comparability across ERCs. Leaders from three different ERCs led and initiated a collaborative effort to address the above issue by building a suite of common evaluation instruments that all current and future ERCs can use. This leading group consists of education directors and external evaluators from all three partners ERCs and engineering education researchers, who have worked together for two years. The project intends to address the four ERC program clusters: Broadening Participation in Engineering, Centers and Networks, Engineering Education, and Engineering Workforce Development. The instruments developed will pay attention to culture of inclusion, outreach activities, mentoring experience, and sustained interest in engineering. The project will deliver best practices in education program evaluation, which will not only support existing ERCs, but will also serve as immediate tools for brand new ERCs and similar large-scale research centers. Expanding the research beyond TEEC and sharing the developed instruments with NSF as well as other ERCs will also promote and encourage continual cross-ERC collaboration and research. Further, the joint evaluation will increase the evaluation consistency across all ERC education programs. Embedded instrumental feedback loops will lead to continual improvement to ERC education performance and support the growth of an inclusive and innovative engineering workforce. Four major deliveries are planned. First, develop a common quantitative assessment instrument, named Multi-ERC Instrument Inventory (MERCII). Second, develop a set of qualitative instruments to complement MERCII. Third, create a web-based evaluation platform for MERCII. Fourth, update the NSF ERC education program evaluation best practice manual. These deliveries together will become part of and supplemented by an ERC evaluator toolbox. This project strives to significantly impact how ERCs evaluate their educational and outreach programs. Single ERC based studies lack the sample size to truly test the validity of any evaluation instruments or measures. A common suite of instruments across ERCs would provide an opportunity for a large scale assessment study. The online platform will further provide an easy-to-use tool for all ERCs to facilitate evaluation, share data, and reporting impacts. 
    more » « less
  3. null (Ed.)
    Collaborative intrusion detection system (CIDS) shares the critical detection-control information across the nodes for improved and coordinated defense. Software-defined network (SDN) introduces the controllers for the networking control, including for the networks spanning across multiple autonomous systems, and therefore provides a prime platform for CIDS application. Although previous research studies have focused on CIDS in SDN, the real-time secure exchange of the detection relevant information (e.g., the detection signature) remains a critical challenge. In particular, the CIDS research still lacks robust trust management of the SDN controllers and the integrity protection of the collaborative defense information to resist against the insider attacks transmitting untruthful and malicious detection signatures to other participating controllers. In this paper, we propose a blockchain-enabled collaborative intrusion detection in SDN, taking advantage of the blockchain’s security properties. Our scheme achieves three important security goals: to establish the trust of the participating controllers by using the permissioned blockchain to register the controller and manage digital certificates, to protect the integrity of the detection signatures against malicious detection signature injection, and to attest the delivery/update of the detection signature to other controllers. Our experiments in CloudLab based on a prototype built on Ethereum, Smart Contract, and IPFS demonstrates that our approach efficiently shares and distributes detection signatures in real-time through the trustworthy distributed platform. 
    more » « less
  4. null (Ed.)
    Collaborative intrusion detection system (CIDS) shares the critical detection-control information across the nodes for improved and coordinated defense. Software-defined network (SDN) introduces the controllers for the networking control, including for the networks spanning across multiple autonomous systems, and therefore provides a prime platform for CIDS application. Although previous research studies have focused on CIDS in SDN, the real-time secure exchange of the detection relevant information (e.g., the detection signature) remains a critical challenge. In particular, the CIDS research still lacks robust trust management of the SDN controllers and the integrity protection of the collaborative defense information to resist against the insider attacks transmitting untruthful and malicious detection signatures to other participating controllers. In this paper, we propose a blockchain-enabled collaborative intrusion detection in SDN, taking advantage of the blockchain’s security properties. Our scheme achieves three important security goals: to establish the trust of the participating controllers by using the permissioned blockchain to register the controller and manage digital certificates, to protect the integrity of the detection signatures against malicious detection signature injection, and to attest the delivery/update of the detection signature to other controllers. Our experiments in CloudLab based on a prototype built on Ethereum, Smart Contract, and IPFS demonstrates that our approach efficiently shares and distributes detection signatures in real-time through the trustworthy distributed platform. 
    more » « less
  5. Vision-based perception systems are crucial for profitable autonomous-driving vehicle products. High accuracy in such perception systems is being enabled by rapidly evolving convolution neural networks (CNNs). To achieve a better understanding of its surrounding environment, a vehicle must be provided with full coverage via multiple cameras. However, when processing multiple video streams, existing CNN frameworks often fail to provide enough inference performance, particularly on embedded hardware constrained by size, weight, and power limits. This paper presents the results of an industrial case study that was conducted to re-think the design of CNN software to better utilize available hardware resources. In this study, techniques such as parallelism, pipelining, and the merging of per-camera images into a single composite image were considered in the context of a Drive PX2 embedded hardware platform. The study identifies a combination of techniques that can be applied to increase throughput (number of simultaneous camera streams) without significantly increasing per-frame latency (camera to CNN output) or reducing per-stream accuracy. 
    more » « less