Abstract The symmetry breaking in octahedral silsesquioxane and its germanium analogues (Si8O12H8and Ge8O12H8) has been investigated using the M06-2X/6-31++G(3df, 3pd) method and group theory. Both structures undergo$${O}_{h}\downarrow {T}_{h}$$symmetry breaking, characterized by pseudo-Jahn−Teller stabilization energies of 0.22 kcal/mol for Si-POSS and 9.82 kcal/mol for Ge-POSS. Under the influence of the pseudo-Jahn–Teller effect, the distortion vector involves the vibrational a2gmode with imaginary frequency. The distortion forces in Oh-POSS are predominantly localized on the oxygen atoms and driven by the coupling between the lowest unoccupied molecular orbital (a1g) and the highest occupied molecular orbital (a2g). The symmetry breaking is attributed to a pseudo-Jahn–Teller mechanism of type (a2gx a1g) = a2g. The symmetrical substitution of oxygen atoms by X (where X = C, N, P) results in viable Th-Si8X12H8and Th-Ge8X12H8structures. The observed pseudo-Jahn–Teller distortion and substitutional symmetry breaking caused by X indicates a consistent electronic relaxation mechanism, characterized by the formation of C=C, N=N and P=P bonds on the POSS cubic faces, which serves as hallmarks of stability. Additionally, we find that the volume of substituted Th-symmetrical POSS is sufficiently large to accommodate small ions.
more »
« less
Jahn-Teller distortion and dissociation of CCl 4 + by transient X-ray spectroscopy simultaneously at the carbon K- and chlorine L-edge
X-ray Transient Absorption Spectroscopy (XTAS) and theoretical calculations are used to study CCl 4 + prepared by 800 nm strong-field ionization. XTAS simultaneously probes atoms at the carbon K-edge (280–300 eV) and chlorine L-edge (195–220 eV). Comparison of experiment to X-ray spectra computed by orbital-optimized density functional theory (OO-DFT) indicates that after ionization, CCl 4 + undergoes symmetry breaking driven by Jahn–Teller distortion away from the initial tetrahedral structure (T d ) in 6 ± 2 fs. The resultant symmetry-broken covalently bonded form subsequently separates to a noncovalently bound complex between CCl 3 + and Cl over 90 ± 10 fs, which is again predicted by theory. Finally, after more than 800 fs, L-edge signals for atomic Cl are observed, indicating dissociation to free CCl 3 + and Cl. The results for Jahn–Teller distortion to the symmetry-broken form of CCl 4 + and formation of the Cl–CCl+3 complex characterize previously unobserved new species along the route to dissociation.
more »
« less
- Award ID(s):
- 1852537
- PAR ID:
- 10354729
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 13
- Issue:
- 32
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 9310 to 9320
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Exotic perovskites significantly enrich materials for multiferroic and magnetoelectric applications. However, their design and synthesis is a challenge due to the mostly required recipe conditions at extremely high pressure. Herein, we presented the Ca 2−x Mn x MnTaO 6 (0 ≤ x ≤ 1.0) solid solutions stabilized by chemical pressure assisted with intermediate physical pressure up to 7 GPa. The incorporation of Mn 2+ into the A-site neither drives any cationic ordering nor modifies the orthorhombic Pbnm structure, namely written as (Ca 1−x/2 Mn x/2 )(Mn 1/2 Ta 1/2 )O 3 with disordered A and B site cationic arrangements. The increment of x is accompanied by a ferromagnetic to antiferromagnetic transition around x = 0.2, which is attributed to the double-exchange interactions between A-site Mn 2+ and B-site Mn 3+ . Partial charge disproportionation of the B-site Mn 3+ into Mn 2+ and Mn 4+ occurs for x above 0.8 samples as manifested by X-ray spectrum and magnetic behaviors. The coexistence of B-site Mn 3+ (Jahn–Teller distortion ion) and B′-site Ta 5+ (second-order Jahn–Teller distortion ion) could be energetically responsible for the absence of A-site columnar ordering as observed in other quadruple perovskites with half of the A-sites occupied by small transition-metal cations. These exceptional findings indicate that exotic perovskites can be successfully stabilized at chemical and intermediate physical pressure, and the presence of Jahn–Teller distortion cations at the same lattice should be avoided to enable cationic ordering.more » « less
-
The excited-state dynamics of fac-Co(ppy)3, where ppy = 2-[2-(pyridyl)phenyl], are measured with femtosecond UV-Vis transient absorption spectroscopy. The initial state is confirmed with spectroelectrochemistry to have significant metal-to-ligand charge transfer (MLCT) character, unlike other Co complexes that generally have ligand-to-metal charge transfer or ligand-field transitions in this energy range. Ground-state recovery occurs in 8.65 ps in dichloromethane. Density functional theory (DFT) calculations show that the MLCT state undergoes Jahn-Teller distortion and converts to a 5-coordinate 3MC state in which one Co-N bond is broken. The results highlights a potential pitfall of heteroleptic-bidentate ligands when designing strong-field ligands for transition metal chromophores.more » « less
-
Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The ‘hybrid improper’ mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb 2 O 7 , LiBiNb 2 O 7 and NaBiNb 2 O 7 , which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi 3+ cations which are often observed to stabilize acentric crystal structures due to their 6s 2 electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb 2 O 7 and LiBiNb 2 O 7 adopt polar crystal structures (space groups I 2 cm and B 2 cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi 3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi 3+ cations with Nd 3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb 2 O 7 (space group P 2 1 2 1 2 1 ) differs significantly from the centrosymmetric structure of NaNdNb 2 O 7 , which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi 3+ cations.more » « less
-
Abstract We present state-selective measurements on the N H 2 + + H + and NH + + H + + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH 3 , where the two photoelectrons and two cations are measured in coincidence using 3D momentum imaging. Three dication electronic states are identified to contribute to the N H 2 + + H + dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold N H 2 + fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited N H 2 + fragment with roughly 1 eV of internal energy. The NH + + H + + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the N H 2 + + H + channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states.more » « less
An official website of the United States government

