This study presents the first 3D two-way coupled fluid structure interaction (FSI) simulation of a hybrid anechoic wind tunnel (HAWT) test section with modeling all important effects, such as turbulence, Kevlar wall porosity and deflection, and reveals for the first time the complete 3D flow structure associated with a lifting model placed into a HAWT. The Kevlar deflections are captured using finite element analysis (FEA) with shell elements operated under a membrane condition. Three-dimensional RANS CFD simulations are used to resolve the flow field. Aerodynamic experimental results are available and are compared against the FSI results. Quantitatively, the pressure coefficients on the airfoil are in good agreement with experimental results. The lift coefficient was slightly underpredicted while the drag was overpredicted by the CFD simulations. The flow structure downstream of the airfoil showed good agreement with the experiments, particularly over the wind tunnel walls where the Kevlar windows interact with the flow field. A discrepancy between previous experimental observations and juncture flow-induced vortices at the ends of the airfoil is found to stem from the limited ability of turbulence models. The qualitative behavior of the flow, including airfoil pressures and cross-sectional flow structure is well captured in the CFD. From the structural side, the behavior of the Kevlar windows and the flow developing over them is closely related to the aerodynamic pressure field induced by the airfoil. The Kevlar displacement and the transpiration velocity across the material is dominated by flow blockage effects, generated aerodynamic lift, and the wake of the airfoil. The airfoil wake increases the Kevlar window displacement, which was previously not resolved by two-dimensional panel-method simulations. The static pressure distribution over the Kevlar windows is symmetrical about the tunnel mid-height, confirming a dominantly two-dimensional flow field.
more »
« less
CFD-Assisted Calibration of a Multi-Hole Probe for a Small UAS
A method for calibrating a multi-hole probe (MHP) used for inertial wind vector measurements from a small Uncrewed Aircraft System (sUAS) is presented. The first phase of the calibration process is broken into three parts: Obtaining reference airspeed, angle of attacks and side slip angles; calibrating MHPs with experimental data; mitigating bias errors to improve calibrations.The method follows the established wind tunnel calibration procedures and includes two additional steps to increase calibration accuracy. The calibration process begins with a computational fluid dynamics (CFD) study on blockage effects in the wind tunnel. CFD results indicate nontrivial deviations of the mean flow due to blockage in wind tunnel test section. Analysis shows a linear relationship between experimental setup position and the resulting deviation from unidirectional flow. The relationship is incorporated into the routine to develop a calibration model. This augments previously demonstrated techniques by processing experimental data from the probe using CFD results. Then the model is refined by removing experimental bias angles. The next phase is to account for upwash effects caused by the sUAS lifting surfaces. Initial CFD analysis has been conducted to determine the relationship between the perceived airframe orientation measured from the relative wind, and the angle of attack measured by the MHP. Preliminary results show that there is a measurable linear relationship between the perceived and actual angles of attack. The objective these additional steps is to increase the accuracy of MHP calibration and characterize the error in inertial wind vector measured during field experiments.
more »
« less
- Award ID(s):
- 1824609
- PAR ID:
- 10354754
- Date Published:
- Journal Name:
- AIAA SciTech 2022 Forum
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. Near-surface wind speed is typically only measured by point observations. The actively heated fiber-optic (AHFO) technique, however, has thepotential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scaleprocesses. Before AHFO can be widely used, its performance needs to be tested in a range of settings. In this work, experimental results on thisnovel observational wind-probing technique are presented. We utilized a controlled wind tunnel setup to assess both the accuracy and the precisionof AHFO under a range of operational conditions (wind speed, angles of attack and temperature difference). The technique allows for wind speedcharacterization with a spatial resolution of 0.3 m on a 1 s timescale. The flow in the wind tunnel was varied in a controlledmanner such that the mean wind ranged between 1 and 17 m s−1. The AHFO measurements are compared to sonic anemometer measurements andshow a high coefficient of determination (0.92–0.96) for all individual angles, after correcting the AHFO measurements for the angle ofattack. Both the precision and accuracy of the AHFO measurements were also greater than 95 % for all conditions. We conclude that AHFO has thepotential to measure wind speed, and we present a method to help choose the heating settings of AHFO. AHFO allows for the characterization ofspatially varying fields of mean wind. In the future, the technique could potentially be combined with conventional distributed temperature sensing(DTS) for sensible heat flux estimation in micrometeorological and hydrological applications.more » « less
-
Road accidents caused by heavy rain have become a frightening issue in recent years requiring investigation. In this regard, an aerodynamic comparative and experimental rain study is carried out to observe the flow phenomena change around a generic ground vehicle (Ahmed Body at a scale) and the utility truck. In this paper, a Discrete Phase Model (DPM) based computational methodology is used to estimate the effect of rain on aerodynamic performance. First, an experimental rain study of the Ahmed body at a scale that is representative of a car or light truck was conducted at the Wall of Wind (WOW) large-scale testing facility using force measurement equipment. In addition, the experiment allowed drag, lift, and side-force coefficients to be measured at yaw angles up to 55 degrees. Next, experimental results are presented for the Ahmed Body back angle of 35 degrees, then compared to validate the computational model for ground vehicle aerodynamics. Afterwards, we investigated the effect of heavy rainfall (LWC = 30 g/m3) on the external aerodynamics of the utility truck with the morphing boom equipment using the validated computational fluid dynamics method, and the external flow is presented using a computer visualization. Finally, force & moment coefficients and velocity distributions around the utility truck are computed for each case, and the results are compared. Keywords: Experimental Wind-Driven Rain Wind Tunnel Testing, Heavy Rainfall, The Ahmed Body, Utility Truck, Morphing Boom Equipment, Discrete Phase Model (DPM), Automotive Aerodynamics, Computational Fluid Dynamics (CFD)more » « less
-
This study investigates the complementary effects of side and corner modification strategies for the aerodynamic performance of tall buildings. A total of 81 doubly symmetric models were examined. High-frequency force balance (HFFB) wind tunnel testing was conducted at the University of Florida’s (UF) boundary layer wind tunnel (BLWT), an NSF-sponsored Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The 81 models were examined under two approach flow conditions, which are suburban and open terrains. For each flow condition, the models were tested under 10 different wind angles from 0° to 45°. The base responses were recorded using a 6-axis load cell. A total of 1620 tests (81 models × 2 flow conditions × 10 wind angles) were performed in the BLWT at UF. Details are provided in the report document.more » « less
-
In the study, a series of wind tunnel tests were conducted to investigate wind effects acting on dome structures (1/60 scale) induced by straight-line winds at a Reynolds number in the order of 106. Computational Fluid Dynamics (CFD) simulations were performed as well, including a Large Eddy Simulation (LES) and Reynolds-Averaged Navier–Stokes (RANS) simulation, and their performances were validated by a comparison with the wind tunnel testing data. It is concluded that wind loads generally increase with upstream wind velocities, and they are reduced over suburban terrain due to ground friction. The maximum positive pressure normally occurs near the base of the dome on the windward side caused by the stagnation area and divergence of streamlines. The minimum suction pressure occurs at the apex of the dome because of the blockage of the dome and convergence of streamlines. Suction force is the most significant among all wind loads, and special attention should be paid to the roof design for proper wind resistance. Numerical simulations also indicate that LES results match better with the wind tunnel testing in terms of the distribution pattern of the mean pressure coefficient on the dome surface and total suction force. The mean and root-mean-square errors of the meridian pressure coefficient associated with the LES are about 60% less than those associated with RANS results, and the error of suction force is about 40–70% less. Moreover, the LES is more accurate in predicting the location of boundary layer separation and reproducing the complex flow field behind the dome, and is superior in simulating vortex structures around the dome to further understand the unsteadiness and dynamics in the flow field.more » « less
An official website of the United States government

