skip to main content

Title: Milk From Women Diagnosed With COVID-19 Does Not Contain SARS-CoV-2 RNA but Has Persistent Levels of SARS-CoV-2-Specific IgA Antibodies
Background Limited data are available regarding the balance of risks and benefits from human milk and/or breastfeeding during and following maternal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective To investigate whether SARS-CoV-2 can be detected in milk and on the breast after maternal coronavirus disease 2019 (COVID-19) diagnosis; and characterize concentrations of milk immunoglobulin (Ig) A specific to the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) during the 2 months after onset of symptoms or positive diagnostic test. Methods Using a longitudinal study design, we collected milk and breast skin swabs one to seven times from 64 lactating women with COVID-19 over a 2-month period, beginning as early as the week of diagnosis. Milk and breast swabs were analyzed for SARS-CoV-2 RNA, and milk was tested for anti-RBD IgA. Results SARS-CoV-2 was not detected in any milk sample or on 71% of breast swabs. Twenty-seven out of 29 (93%) breast swabs collected after breast washing tested negative for SARS-CoV-2. Detection of SARS-CoV-2 on the breast was associated with maternal coughing and other household COVID-19. Most (75%; 95% CI, 70-79%; n=316) milk samples contained anti-RBD IgA, and concentrations increased ( P =.02) during the first two weeks following more » onset of COVID-19 symptoms or positive test. Milk-borne anti-RBD IgA persisted for at least two months in 77% of women. Conclusion Milk produced by women with COVID-19 does not contain SARS-CoV-2 and is likely a lasting source of passive immunity via anti-RBD IgA. These results support recommendations encouraging lactating women to continue breastfeeding during and after COVID-19 illness. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Award ID(s):
2031888 2031715 2031753 2031761
Publication Date:
NSF-PAR ID:
10354756
Journal Name:
Frontiers in Immunology
Volume:
12
ISSN:
1664-3224
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin–angiotensin–aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.
  2. The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per μL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishingmore »positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.« less
  3. The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin onmore »the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant.« less
  4. Background: Among the most consequential unknowns of the devastating COVID-19 pandemic are the durability of immunity and time to likely reinfection. There are limited direct data on SARS-CoV-2 long-term immune responses and reinfection. The aim of this study is to use data on the durability of immunity among evolutionarily close coronavirus relatives of SARS-CoV-2 to estimate times to reinfection by a comparative evolutionary analysis of related viruses SARS-CoV, MERS-CoV, human coronavirus (HCoV)-229E, HCoV-OC43, and HCoV-NL63. Methods: We conducted phylogenetic analyses of the S, M, and ORF1b genes to reconstruct a maximum-likelihood molecular phylogeny of human-infecting coronaviruses. This phylogeny enabled comparative analyses of peak-normalised nucleocapsid protein, spike protein, and whole-virus lysate IgG antibody optical density levels, in conjunction with reinfection data on endemic human-infecting coronaviruses. We performed ancestral and descendent states analyses to estimate the expected declines in antibody levels over time, the probabilities of reinfection based on antibody level, and the anticipated times to reinfection after recovery under conditions of endemic transmission for SARS-CoV-2, as well as the other human-infecting coronaviruses. Findings: We obtained antibody optical density data for six human-infecting coronaviruses, extending from 128 days to 28 years after infection between 1984 and 2020. These data provided a meansmore »to estimate profiles of the typical antibody decline and probabilities of reinfection over time under endemic conditions. Reinfection by SARS-CoV-2 under endemic conditions would likely occur between 3 months and 5·1 years after peak antibody response, with a median of 16 months. This protection is less than half the duration revealed for the endemic coronaviruses circulating among humans (5-95% quantiles 15 months to 10 years for HCoV-OC43, 31 months to 12 years for HCoV-NL63, and 16 months to 12 years for HCoV-229E). For SARS-CoV, the 5-95% quantiles were 4 months to 6 years, whereas the 95% quantiles for MERS-CoV were inconsistent by dataset. Interpretation: The timeframe for reinfection is fundamental to numerous aspects of public health decision making. As the COVID-19 pandemic continues, reinfection is likely to become increasingly common. Maintaining public health measures that curb transmission-including among individuals who were previously infected with SARS-CoV-2-coupled with persistent efforts to accelerate vaccination worldwide is critical to the prevention of COVID-19 morbidity and mortality. Funding: US National Science Foundation.« less
  5. Sugden, Bill (Ed.)
    The scientific community is focused on developing antiviral therapies to mitigate the impacts of the ongoing novel coronavirus disease 2019 (COVID-19) outbreak. This will be facilitated by improved understanding of viral dynamics within infected hosts. Here, using a mathematical model in combination with published viral load data, we compare within-host viral dynamics of SARS-CoV-2 with analogous dynamics of MERS-CoV and SARS-CoV. Our quantitative analyses using a mathematical model revealed that the within-host reproduction number at symptom onset of SARS-CoV-2 was statistically significantly larger than that of MERS-CoV and similar to that of SARS-CoV. In addition, the time from symptom onset to the viral load peak for SARS-CoV-2 infection was shorter than those of MERS-CoV and SARS-CoV. These findings suggest the difficulty of controlling SARS-CoV-2 infection by antivirals. We further used the viral dynamics model to predict the efficacy of potential antiviral drugs that have different modes of action. The efficacy was measured by the reduction in the viral load area under the curve (AUC). Our results indicate that therapies that block de novo infection or virus production are likely to be effective if and only if initiated before the viral load peak (which appears 2–3 days after symptom onset), butmore »therapies that promote cytotoxicity of infected cells are likely to have effects with less sensitivity to the timing of treatment initiation. Furthermore, combining a therapy that promotes cytotoxicity and one that blocks de novo infection or virus production synergistically reduces the AUC with early treatment. Our unique modeling approach provides insights into the pathogenesis of SARS-CoV-2 and may be useful for development of antiviral therapies.« less