skip to main content

Title: Taxonomic revision of the Pheidole megacephala species-group (Hymenoptera, Formicidae) from the Malagasy Region
Background The Malagasy Region, one of the top megadiversity regions, hosts one of the highest numbers of endemic and threatened organisms on earth. One of the most spectacular examples of ant radiation on the island has occurred in the hyperdiverse genus Pheidole . To this date, there are 135 described Madagascan Pheidole divided into 16 species-groups, and 97% of Malagasy species are endemic to the island. This study is a taxonomic revision of the Pheidole megacephala group, one of only two species-groups comprising a combination of native, endemic taxa and widely distributed introduced species. Methods The diversity of the Malagasy members of the megacephala group was assessed via application of qualitative morphological and DNA sequence data. Qualitative, external morphological characteristics ( e.g., head shape, gaster sculpture, body colouration) were evaluated in order to create a priori grouping hypotheses, and confirm and improve species delimitation. Mitochondrial DNA sequences from cytochrome oxidase I (COI) gene fragments were analyzed to test the putative species previously delimited by morphological analyses. Results We recognize three species belonging to the megacephala group: P. megacephala (Fabricius, 1793), P. megatron Fischer & Fisher, 2013 and P. spinosa Forel, 1891 stat. nov. Pheidole spinosa is redescribed and elevated to more » the species level. The following names are recognized as junior synonyms of P. spinosa : P. megacephala scabrior Forel, 1891 syn. nov. , P. picata Forel, 1891 syn. nov. , P. picata gietleni Forel, 1905 syn. nov. , P. picata bernhardae Emery, 1915 syn. nov. , and P. decepticon Fischer & Fisher, 2013 syn. nov. The results are supplemented with an identification key to species for major workers of the megacephala group, high-resolution images for major and minor workers, and comments on the distribution and biology of all Malagasy members of the group. Our study revealed that Pheidole megacephala , a species listed among the 100 worst invasive species worldwide, occurs in both natural and disturbed sites in the Malagasy region. The two remaining members of the megacephala group, most likely endemic to this region, are also present in anthropogenic habitats and often co-occur with P. megacephala . It appears that the Malagasy members of the group are generalists and dominant in anthropogenic habitats. Additionally, we documented the presence of supermajors in colonies of P. spinosa —a phenomenon previously not known for this group. « less
Authors:
;
Award ID(s):
1120867
Publication Date:
NSF-PAR ID:
10354927
Journal Name:
PeerJ
Volume:
10
Page Range or eLocation-ID:
e13263
ISSN:
2167-8359
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Madagascar is famous for its extremely rich biodiversity; the island harbors predominantly endemic and threatened communities meriting special attention from biodiversity scientists. Continuing ongoing efforts to inventory the Malagasy ant fauna, we revise the species currently placed in the myrmicine genus Aphaenogaster Mayr. One species described from Madagascar, Aphaenogaster friederichsi Forel, is synonymized with the Palearctic A. subterranea Latreille syn. nov. This species is considered neither native to Madagascar nor established in the region. This revision focuses on the balance of species in the A. swammerdami group which are all endemic to Madagascar. Methods The diversity of the Malagasy Aphaenogaster fauna was assessed via application of multiple lines of evidence involving quantitative morphometric, qualitative morphological, and DNA sequence data. (1) Morphometric investigation was based on hypothesis-free Nest Centroid clustering (NC-clustering) combined with PArtitioning based on Recursive Thresholding (PART) to estimate the number of morphological clusters and determine the most probable boundaries between them. This protocol provides a repeatable and testable approach to find patterns in continuous morphometric data. Species boundaries and the reliability of morphological clusters recognized by these exploratory analyses were tested via confirmatory Linear Discriminant Analysis (LDA). (2) Qualitative, external morphological characteristics (e.g., shape, coloration patterns, setaemore »number) were subjectively evaluated in order to create a priori grouping hypotheses, and confirm and improve species delimitation. (3) Species delimitation analyses based on mitochondrial DNA sequences from cytochrome oxidase I (COI) gene fragments were carried out to test the putative species previously delimited by morphological and morphometric analyses. Results Five species can be inferred based on the integrated evaluation of multiple lines of evidence; of these, three are new to science: Aphaenogaster bressleri sp. n ., A. gonacantha (Emery, 1899), A. makay sp. n. , A. sahafina sp. n. , and A. swammerdami Forel, 1886. In addition, three new synonymies were found for A. swammerdami Forel, 1886 ( A. swammerdami clara Santschi, 1915 syn. n. , A. swammerdami curta Forel, 1891 syn. n. and A. swammerdami spinipes Santschi, 1911 syn. n. ). Descriptions and redefinitions for each taxon and an identification key for their worker castes using qualitative traits and morphometric data are given. Geographic maps depicting species distributions and biological information regarding nesting habits for the species are also provided.« less
  2. The arboreal ant genus Tetraponera is widely distributed in the Paleotropics. Five species groups were previously recognized in the Afrotropical region (including Madagascar), and two of these were revised. This paper provides a taxonomic treatment of the remaining species. A survey of the T. allaborans group on the African mainland leads to the recognition of fourteen species: T. clypeata (Emery) (= T. braunsi (Forel) syn. nov.); T. continua (Forel) (= T. claveaui (Santschi) syn. nov.); T. cortina sp. nov.; T. dispar sp. nov.; T. emeryi (Forel) (= T. braunsi durbanensis (Forel) syn. nov.); T. exactor sp. nov.; T. furtiva sp. nov.; T. gerdae (Stitz); T. liengmei (Forel); T. mayri (Forel); T. pedana sp. nov.; T. penzigi (Mayr) (= T. scotti Donisthorpe syn. nov. = T. zavattarii (Menozzi) syn. nov. = T. penzigi praestigiatrix Santschi syn. nov.); T. pumila sp. nov.; and T. tessmanni (Stitz). A full revision of the Malagasy species of the T. allaborans group is deferred, but the following new synonymy is established: T. hysterica (Forel) = T. hysterica inflata (Emery) syn. nov.; T. longula (Emery) = T. sahlbergii deplanata (Forel) syn. nov.; T. mandibularis (Emery) = T. flexuosa (Santschi) syn. nov.; T. morondaviensis (Forel) = T. arrogansmore »(Santschi) syn. nov. = T. demens (Santschi) syn. nov. = T. hysterica dimidiata (Forel) syn. nov.; and T. sahlbergii = T. sahlbergii spuria (Forel) syn. nov. = T. plicatidens (Santschi) syn. nov. In the T. ambigua group the following synonymy is reinstated (syn. rev.): T. ambigua (Emery) = T. erythraea (Emery) = T. bifoveolata (Mayr) = T. angolensis Santschi; and T. ophthalmica (Emery) = T. unidens Santschi. A new species is described in the Madagascar-endemic T. grandidieri group: T. elegans sp. nov. Scrutiny of the T. natalensis group indicates the occurrence of ten species: T. andrei (Mayr), T. anthracina (Santschi), T. caffra (Santschi), T. insularis sp. nov., T. kosi sp. nov., T. mocquerysi (André), T. natalensis (F. Smith), T. redacta sp. nov., T. schulthessi (Santschi), and T. setosa sp. nov. T. insularis is known only from Madagascar, while the other nine species are confined to the African mainland. The following new synonymy is proposed for the T. natalensis group (senior synonym cited first): T. anthracina = T. poultoni Donisthorpe syn. nov. = T. triangularis (Stitz) syn. nov.; T. mocquerysi = T. mocquerysi biozellata (Karavaiev) syn. nov. = T. mocquerysi elongata (Stitz) syn. nov. = T. emacerata (Santschi) syn. nov. = T. triangularis illota (Santschi) syn. nov. = T. ledouxi Terron syn. nov. = T. lemoulti (Santschi) syn. nov. = T. mocquerysi lepida Wheeler syn. nov. = T. monardi (Santschi) syn. nov. = T. emacerata oberbecki (Forel) syn. nov. = T. emacerata odiosa (Forel) syn. nov.; and T. natalensis = T. angusta (Arnold) syn. nov. = T. capensis (F. Smith) syn. nov. = T. natalensis cuitensis (Forel) syn. nov. = T. mocquerysi lutea (Stitz) syn. nov. = T. natalensis obscurata (Emery) syn. nov. = T. prelli (Forel) syn. nov. = T. natalensis usambarensis (Forel) syn. nov. The extensive synonymy under T. mocquerysi and T. natalensis reflects the conviction that previous taxonomists underestimated the extent of intraspecific variation in these taxa, but further study and testing of this conclusion is warranted. An illustrated worker- and queen-based key is provided for all species of Tetraponera occurring in Africa and Madagascar, except the Malagasy members of the T. allaborans group.« less
  3. The Camponotus subgenus Myrmosaga subgen. rev. from the Malagasy region is revised based on analysis of both qualitative morphological characters and morphometric traits. The multivariate analysis used the Nest Centroid (NC)-clustering method to generate species hypotheses based on 19 continuous morphological traits of minor workers. The proposed species hypotheses were confirmed by cumulative Linear Discriminant Analysis (LDA). Morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. The present study places the subgenus Myrmopytia syn. nov. in synonymy to Myrmosaga . It recognizes 38 species, of which 19 are newly described: C. aina sp. nov. , C. aro sp. nov. , C. asara sp. nov. , C. atimo sp. nov. , C. bemaheva sp. nov. , C. bozaka sp. nov. , C. daraina sp. nov. , C. harenarum sp. nov. , C. joany sp. nov. , C. karsti sp. nov. , C. kelimaso sp. nov. , C. lokobe sp. nov. , C. mahafaly sp. nov. , C. niavo sp. nov. , C. rotrae sp. nov. , C. sambiranoensis sp. nov. , C. tapia sp. nov. , C. tendryi sp. nov. , C. vano sp. nov. Eleven species are redescribed: C. aurosus Roger, C.more »cervicalis Roger, C. dufouri Forel, C. gibber Forel, C. hagensii Forel, C. hova Forel, C. hovahovoides Forel, C. immaculatus Forel, C. quadrimaculatus Forel, C. roeseli Forel, C. strangulatus Santschi. The following are raised to species and redescribed: C. becki Santschi stat. nov. , C. boivini Forel stat. rev. , C. cemeryi Özdikmen stat. rev. , C. mixtellus Forel stat. nov. , C. radamae Forel stat. nov. Camponotus maculatus st. fairmairei Santschi syn. nov. , is synonymized under C. boivini . The following are synonymized under C. cervicalis : Camponotus cervicalis gaullei Santschi, syn. nov. ; Camponotus perroti Forel, syn. nov. ; Camponotus perroti aeschylus Forel, syn. nov. ; Camponotus gerberti Donisthorpe, syn. nov. Camponotus dufouri imerinensis Forel, syn. nov. is a synonym of C. dufouri , Camponotus hova var. obscuratus Emery, syn. nov. is a synonym of C. hova , Camponotus quadrimaculatus opacata Emery, syn. nov. is a synonym of C. immaculatus , Camponotus maculatus st. legionarium Santschi, syn. nov. is a synonym of C. roeseli , Camponotus hova maculatoides Emery, syn. nov. is a synonym of C. strangulatus . The following are synonymized under C. quadrimaculatus : Camponotus kelleri Forel, syn. nov. , Camponotus kelleri var. invalidus Forel, syn. nov. , Camponotus quadrimaculatus sellaris Emery, syn. nov. As C. imitator Forel, C. liandia Rakotonirina & Fisher, and C. lubbocki Forel have been recently described and redescribed, only diagnoses and taxonomic discussions are provided. This revision also includes an illustrated species identification key, taxonomic discussions, images, and distribution maps for each species superimposed on the ecoregions of Madagascar.« less
  4. The present study represents a taxonomic revision of the P. bessonii species-group from Madagascar. Eighteen members of this group are recognized and described, and an illustrated identification key to this group is also presented. One name is raised to species level: P. decollata Forel, 1892 stat. nov. We also redescribe worker castes and designate lectotypes for P. bessonii Forel, 1891, P. decollata Forel, 1892, P. grallatrix Emery, 1899, P. madecassa Forel, 1892, and P. oswaldi 1891. The following 13 new species are described: Pheidole antsahabe sp. nov., Pheidole atsirakambiaty sp. nov., Pheidole clara sp. nov., Pheidole flammea sp. nov., Pheidole flavodepressa sp. nov., Pheidole mantadioflava sp. nov., Pheidole maro sp. nov., Pheidole ovalinoda sp. nov., Pheidole similis sp. nov., Pheidole tenebrovulgaris sp. nov., Pheidole uranus sp. nov., Pheidole voreios sp. nov., Pheidole zirafy sp. nov.
  5. The subgenus Mayria of the genus Camponotus (Hymenoptera: Formicidae) is revised. The subgenus is endemic to Madagascar where it occupies a broad range of habitats, from deciduous and dry forest to rainforest. A taxonomic review is provided of this subgenus, integrating multiples lines of evidence including qualitative morphology and quantitative morphometry. Species hypotheses are formed by Nest Centroid clustering. In total, 36 species are treated, of which eleven are newly described: Camponotus andrianjaka sp. nov. , Camponotus antsaraingy sp. nov. , Camponotus chrislaini sp. nov. , Camponotus claveri sp. nov. , Camponotus ivadia sp. nov. , Camponotus jjacquia sp. nov. , Camponotus maintilany sp. nov. , Camponotus norvigi sp. nov. , Camponotus ihazofotsy sp. nov. , Camponotus tsimelahy sp. nov. , Camponotus zoro sp. nov. Five species are redescribed. Camponotus themistocles Forel stat. nov. , is raised to species. In addition, the subgenus is redefined to include 39 species. Twenty-two previously described species are transferred to this subgenus and thirteen species previously placed in the subgenus are transferred out of the subgenus. Nine morphologically consistent species groups are delineated to facilitate species identification within the subgenus. This revision includes a classification, a key to species groups, and an updated keymore »to species based on the minor worker caste.« less