Materials and their geometry make up the tools for designing nanophotonic devices. In the past, the real part of the refractive index of materials has remained the focus for designing novel devices. The absorption, or imaginary index, was tolerated as an undesirable effect. However, a clever distribution of imaginary index of materials offers an additional degree of freedom for designing nanophotonic devices. Non-Hermitian optics provides a unique opportunity to take advantage of absorption losses in materials to enable unconventional physical effects. Typically occurring near energy degeneracies called exceptional points, these effects include enhanced sensitivity, unidirectional invisibility, and non-trivial topology. In this work, we leverage plasmonic absorption losses (or imaginary index) as a design parameter for non-Hermitian, passive parity-time symmetric metasurfaces. We show that coupled plasmonic-photonic resonator pairs, possessing a large asymmetry in absorptive losses but balanced radiative losses, exhibit an optical phase transition at an exceptional point and directional scattering. These systems enable new pathways for metasurface design using phase, symmetry, and topology as powerful tools.
more »
« less
Non-Hermitian metasurface with non-trivial topology
Abstract The synergy between topology and non-Hermiticity in photonics holds immense potential for next-generation optical devices that are robust against defects. However, most demonstrations of non-Hermitian and topological photonics have been limited to super-wavelength scales due to increased radiative losses at the deep-subwavelength scale. By carefully designing radiative losses at the nanoscale, we demonstrate a non-Hermitian plasmonic–dielectric metasurface in the visible with non-trivial topology. The metasurface is based on a fourth order passive parity-time symmetric system. The designed device exhibits an exceptional concentric ring in its momentum space and is described by a Hamiltonian with a non-Hermitian Z 3 $${\mathbb{Z}}_{3}$$ topological invariant of V = −1. Fabricated devices are characterized using Fourier-space imaging for single-shot k -space measurements. Our results demonstrate a way to combine topology and non-Hermitian nanophotonics for designing robust devices with novel functionalities.
more »
« less
- Award ID(s):
- 1935446
- PAR ID:
- 10354946
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 11
- Issue:
- 6
- ISSN:
- 2192-8614
- Page Range / eLocation ID:
- 1159 to 1165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Photonic topological insulators provide a route for disorder-immune light transport, which holds promise for practical applications. Flexible reconfiguration of topological light pathways can enable high-density photonics routing, thus sustaining the growing demand for data capacity. By strategically interfacing non-Hermitian and topological physics, we demonstrate arbitrary, robust light steering in reconfigurable non-Hermitian junctions, in which chiral topological states can propagate at an interface of the gain and loss domains. Our non-Hermitian–controlled topological state can enable the dynamic control of robust transmission links of light inside the bulk, fully using the entire footprint of a photonic topological insulator.more » « less
-
Abstract Sensors are indispensable tools of modern life that are ubiquitously used in diverse settings ranging from smartphones and autonomous vehicles to the healthcare industry and space technology. By interfacing multiple sensors that collectively interact with the signal to be measured, one can go beyond the signal-to-noise ratios (SNR) attainable by the individual constituting elements. Such techniques have also been implemented in the quantum regime, where a linear increase in the SNR has been achieved via using entangled states. Along similar lines, coupled non-Hermitian systems have provided yet additional degrees of freedom to obtain better sensors via higher-order exceptional points. Quite recently, a new class of non-Hermitian systems, known as non-Hermitian topological sensors (NTOS) has been theoretically proposed. Remarkably, the synergistic interplay between non-Hermiticity and topology is expected to bestow such sensors with an enhanced sensitivity that grows exponentially with the size of the sensor network. Here, we experimentally demonstrate NTOS using a network of photonic time-multiplexed resonators in the synthetic dimension represented by optical pulses. By judiciously programming the delay lines in such a network, we realize the archetypal Hatano-Nelson model for our non-Hermitian topological sensing scheme. Our experimentally measured sensitivities for different lattice sizes confirm the characteristic exponential enhancement of NTOS. We show that this peculiar response arises due to the combined synergy between non-Hermiticity and topology, something that is absent in Hermitian topological lattices. Our demonstration of NTOS paves the way for realizing sensors with unprecedented sensitivities.more » « less
-
We experimentally demonstrate enhanced sensitivities within non-Hermitian topological lattices realized in a dissipatively-coupled network of time-multiplexed resonators. Our demonstration paves the way for realizing optical sensors with unprecedented sensitivities using notions of non-Hermiticity and topology.more » « less
-
Abstract Acoustic metasurfaces are at the frontier of acoustic functional material research owing to their advanced capabilities of wave manipulation at an acoustically vanishing size. Despite significant progress in the last decade, conventional acoustic metasurfaces are still fundamentally limited by their underlying physics and design principles. First, conventional metasurfaces assume that unit cells are decoupled and therefore treat them individually during the design process. Owing to diffraction, however, the non-locality of the wave field could strongly affect the efficiency and even alter the behavior of acoustic metasurfaces. Additionally, conventional acoustic metasurfaces operate by modulating the phase and are typically treated as lossless systems. Due to the narrow regions in acoustic metasurfaces’ subwavelength unit cells, however, losses are naturally present and could compromise the performance of acoustic metasurfaces. While the conventional wisdom is to minimize these effects, a counter-intuitive way of thinking has emerged, which is to harness the non-locality as well as loss for enhanced acoustic metasurface functionality. This has led to a new generation of acoustic metasurface design paradigm that is empowered by non-locality and non-Hermicity, providing new routes for controlling sound using the acoustic version of 2D materials. This review details the progress of non-local and non-Hermitian acoustic metasurfaces, providing an overview of the recent acoustic metasurface designs and discussing the critical role of non-locality and loss in acoustic metasurfaces. We further outline the synergy between non-locality and non-Hermiticity, and delineate the potential of using non-local and non-Hermitian acoustic metasurfaces as a new platform for investigating exceptional points, the hallmark of non-Hermitian physics. Finally, the current challenges and future outlook for this burgeoning field are discussed.more » « less
An official website of the United States government

