Materials and their geometry make up the tools for designing nanophotonic devices. In the past, the real part of the refractive index of materials has remained the focus for designing novel devices. The absorption, or imaginary index, was tolerated as an undesirable effect. However, a clever distribution of imaginary index of materials offers an additional degree of freedom for designing nanophotonic devices. Non-Hermitian optics provides a unique opportunity to take advantage of absorption losses in materials to enable unconventional physical effects. Typically occurring near energy degeneracies called exceptional points, these effects include enhanced sensitivity, unidirectional invisibility, and non-trivial topology. In this work, we leverage plasmonic absorption losses (or imaginary index) as a design parameter for non-Hermitian, passive parity-time symmetric metasurfaces. We show that coupled plasmonic-photonic resonator pairs, possessing a large asymmetry in absorptive losses but balanced radiative losses, exhibit an optical phase transition at an exceptional point and directional scattering. These systems enable new pathways for metasurface design using phase, symmetry, and topology as powerful tools.
- Award ID(s):
- 1935446
- NSF-PAR ID:
- 10354946
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 11
- Issue:
- 6
- ISSN:
- 2192-8614
- Page Range / eLocation ID:
- 1159 to 1165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Photonic topological insulators provide a route for disorder-immune light transport, which holds promise for practical applications. Flexible reconfiguration of topological light pathways can enable high-density photonics routing, thus sustaining the growing demand for data capacity. By strategically interfacing non-Hermitian and topological physics, we demonstrate arbitrary, robust light steering in reconfigurable non-Hermitian junctions, in which chiral topological states can propagate at an interface of the gain and loss domains. Our non-Hermitian–controlled topological state can enable the dynamic control of robust transmission links of light inside the bulk, fully using the entire footprint of a photonic topological insulator.more » « less
-
Abstract Non-Hermitian degeneracies, also known as exceptional points (EPs), have been the focus of much attention due to their singular eigenvalue surface structure. Nevertheless, as pertaining to a non-Hermitian metasurface platform, the reduction of an eigenspace dimensionality at the EP has been investigated mostly in a passive repetitive manner. Here, we propose an electrical and spectral way of resolving chiral EPs and clarifying the consequences of chiral mode collapsing of a non-Hermitian gated graphene metasurface. More specifically, the measured non-Hermitian Jones matrix in parameter space enables the quantification of nonorthogonality of polarisation eigenstates and half-integer topological charges associated with a chiral EP. Interestingly, the output polarisation state can be made orthogonal to the coalesced polarisation eigenstate of the metasurface, revealing the missing dimension at the chiral EP. In addition, the maximal nonorthogonality at the chiral EP leads to a blocking of one of the cross-polarised transmission pathways and, consequently, the observation of enhanced asymmetric polarisation conversion. We anticipate that electrically controllable non-Hermitian metasurface platforms can serve as an interesting framework for the investigation of rich non-Hermitian polarisation dynamics around chiral EPs.
-
Recent years have witnessed a flurry of research activities in topological photonics, predominantly driven by the prospect for topological protection–a property that endows such systems with robustness against local defects, disorder, and perturbations. This field emerged in fermionic environments and primarily evolved within the framework of quantum mechanics which is by nature a Hermitian theory. However, in light of the ubiquitous presence of non-Hermiticity in a host of natural and artificial settings, one of the most pressing questions today is how non-Hermiticity may affect some of the predominant features of topological arrangements and whether or not novel topological phases may arise in non-conservative and out of equilibrium systems that are open to the environment. Here, we provide a brief overview of recent developments and ongoing efforts in this field and present our perspective on future directions and potential challenges. Special attention will be given to the interplay of topology and non-Hermiticity–an aspect that could open up new frontiers in physical sciences and could lead to promising opportunities in terms of applications in various disciplines of photonics.
-
We experimentally demonstrate enhanced sensitivities within non-Hermitian topological lattices realized in a dissipatively-coupled network of time-multiplexed resonators. Our demonstration paves the way for realizing optical sensors with unprecedented sensitivities using notions of non-Hermiticity and topology.