skip to main content


Title: Symbiosis in Digital Evolution: Past, Present, and Future
Symbiosis, the living together of unlike organisms as symbionts, is ubiquitous in the natural world. Symbioses occur within and across all scales of life, from microbial to macro-faunal systems. Further, the interactions between symbionts are multimodal in both strength and type, can span from parasitic to mutualistic within one partnership, and persist over generations. Studying the ecological and evolutionary dynamics of symbiosis in natural or laboratory systems poses a wide range of challenges, including the long time scales at which symbioses evolve de novo , the limited capacity to experimentally control symbiotic interactions, the weak resolution at which we can quantify interactions, and the idiosyncrasies of current model systems. These issues are especially challenging when seeking to understand the ecological effects and evolutionary pressures on and of a symbiosis, such as how a symbiosis may shift between parasitic and mutualistic modes and how that shift impacts the dynamics of the partner population. In digital evolution, populations of computational organisms compete, mutate, and evolve in a virtual environment. Digital evolution features perfect data tracking and allows for experimental manipulations that are impractical or impossible in natural systems. Furthermore, modern computational power allows experimenters to observe thousands of generations of evolution in minutes (as opposed to several months or years), which greatly expands the range of possible studies. As such, digital evolution is poised to become a keystone technique in our methodological repertoire for studying the ecological and evolutionary dynamics of symbioses. Here, we review how digital evolution has been used to study symbiosis, and we propose a series of open questions that digital evolution is well-positioned to answer.  more » « less
Award ID(s):
1813069
NSF-PAR ID:
10354952
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In digital evolution, populations of computational organisms evolve via the same principles that govern natural selection in nature. These platforms have been used to great effect as a controlled system in which to conduct evolutionary experiments and develop novel evolutionary theory. In addition to their complex evolutionary dynamics, many digital evolution systems also produce rich ecological communities. As a result, digital evolution is also a powerful tool for research on eco-evolutionary dynamics. Here, we review the research to date in which digital evolution platforms have been used to address eco-evolutionary (and in some cases purely ecological) questions. This work has spanned a wide range of topics, including competition, facilitation, parasitism, predation, and macroecological scaling laws. We argue for the value of further ecological research in digital evolution systems and present some particularly promising directions for further research. 
    more » « less
  2. Cooper, Vaughn S. (Ed.)
    ABSTRACT Root nodulating rhizobia are nearly ubiquitous in soils and provide the critical service of nitrogen fixation to thousands of legume species, including staple crops. However, the magnitude of fixed nitrogen provided to hosts varies markedly among rhizobia strains, despite host legumes having mechanisms to selectively reward beneficial strains and to punish ones that do not fix sufficient nitrogen. Variation in the services of microbial mutualists is considered paradoxical given host mechanisms to select beneficial genotypes. Moreover, the recurrent evolution of non-fixing symbiont genotypes is predicted to destabilize symbiosis, but breakdown has rarely been observed. Here, we deconstructed hundreds of genome sequences from genotypically and phenotypically diverse Bradyrhizobium strains and revealed mechanisms that generate variation in symbiotic nitrogen fixation. We show that this trait is conferred by a modular system consisting of many extremely large integrative conjugative elements and few conjugative plasmids. Their transmissibility and propensity to reshuffle genes generate new combinations that lead to uncooperative genotypes and make individual partnerships unstable. We also demonstrate that these same properties extend beneficial associations to diverse host species and transfer symbiotic capacity among diverse strains. Hence, symbiotic nitrogen fixation is underpinned by modularity, which engenders flexibility, a feature that reconciles evolutionary robustness and instability. These results provide new insights into mechanisms driving the evolution of mobile genetic elements. Moreover, they yield a new predictive model on the evolution of rhizobial symbioses, one that informs on the health of organisms and ecosystems that are hosts to symbionts and that helps resolve the long-standing paradox. IMPORTANCE Genetic variation is fundamental to evolution yet is paradoxical in symbiosis. Symbionts exhibit extensive variation in the magnitude of services they provide despite hosts having mechanisms to select and increase the abundance of beneficial genotypes. Additionally, evolution of uncooperative symbiont genotypes is predicted to destabilize symbiosis, but breakdown has rarely been observed. We analyzed genome sequences of Bradyrhizobium, bacteria that in symbioses with legume hosts, fix nitrogen, a nutrient essential for ecosystems. We show that genes for symbiotic nitrogen fixation are within elements that can move between bacteria and reshuffle gene combinations that change host range and quality of symbiosis services. Consequently, nitrogen fixation is evolutionarily unstable for individual partnerships, but is evolutionarily stable for legume- Bradyrhizobium symbioses in general. We developed a holistic model of symbiosis evolution that reconciles robustness and instability of symbiosis and informs on applications of rhizobia in agricultural settings. 
    more » « less
  3. Abstract

    Most studies on the evolution of migration focus on food, mates and/or climate as factors influencing these movements, whereas negative species interactions such as predators, parasites and pathogens are often ignored. Although infection and its associated costs clearly have the potential to influence migration, thoroughly studying these interactions is challenging without a solid theoretical framework from which to develop testable predictions in natural systems.

    Here, we aim to understand when parasites favour the evolution of migration.

    We develop a general model which enables us to explore a broad range of biological conditions and to capture population and infection dynamics over both ecological and evolutionary time‐scales.

    We show that when migration evolves depends on whether the costs of migration and infection are paid in reduced fecundity or survival. Also important are the parasite transmission mode and spatiotemporal dynamics of infection and recovery (if it occurs). Finally, we find that partial migration (where only a fraction of the population migrates) can evolve but only when parasite transmission is density‐dependent.

    Our results highlight the critical, if overlooked, role of parasites in shaping long‐distance movement patterns, and suggest that infection should be considered alongside more traditional drivers of migration in both empirical and theoretical studies.

     
    more » « less
  4. Abstract

    Intraspecific niche divergence is an important driver of species range, population abundance and impacts on ecosystem functions. Genetic changes are the primary focus when studying intraspecific divergence; however, the role of ecological interactions, particularly host‐microbiome symbioses, is receiving increased attention. The relative importance of these evolutionary and ecological mechanisms has seen only limited evaluation. To address this question, we usedMicrocystis aeruginosa, the globally distributed cyanobacterium that dominates freshwater harmful algal blooms. These blooms have been increasing in occurrence and intensity worldwide, causing major economic and ecological damages. We evaluated 46 isolates ofM. aeruginosaand their microbiomes,collected from 14 lakes in Michigan, USA, that vary over 20‐fold in phosphorus levels, the primary limiting nutrient in freshwater systems. Genomes ofM. aeruginosadiverged along this phosphorus gradient in genomic architecture and protein functions. Fitness in low‐phosphorus lakes corresponded with additional shifts withinM. aeruginosaincluding genome‐wide reductions in nitrogen use, an expansion of phosphorus assimilation genes and an alternative life history strategy of nonclonal colony formation. In addition to host shifts, despite culturing in common‐garden conditions, host‐microbiomes diverged along the gradient in taxonomy, but converged in function with evidence of metabolic interdependence between the host and its microbiome. Divergence corresponded with a physiological trade‐off between fitness in low‐phosphorus environments and growth rate in phosphorus‐rich conditions. Co‐occurrence of genotypes adapted to different nutrient environments in phosphorus‐rich lakes may have critical implications for understanding howM. aeruginosablooms persist after initial nutrient depletion. Ultimately, we demonstrate that the intertwined effects of genome evolution, host life history strategy and ecological interactions between a host and its microbiome correspond with an intraspecific niche shift with important implications for whole ecosystem function.

     
    more » « less
  5. Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution. 
    more » « less