skip to main content


Title: Real-time feedback control of split-belt ratio to induce targeted step length asymmetry
Abstract Introduction Split-belt treadmill training has been used to assist with gait rehabilitation following stroke. This method modifies a patient’s step length asymmetry by adjusting left and right tread speeds individually during training. However, current split-belt training approaches pay little attention to the individuality of patients by applying set tread speed ratios (e.g., 2:1 or 3:1). This generalization results in unpredictable step length adjustments between the legs. To customize the training, this study explores the capabilities of a live feedback system that modulates split-belt tread speeds based on real-time step length asymmetry. Materials and methods Fourteen healthy individuals participated in two 1.5-h gait training sessions scheduled 1 week apart. They were asked to walk on the Computer Assisted Rehabilitation Environment (CAREN) split-belt treadmill system with a boot on one foot to impose asymmetrical gait patterns. Each training session consisted of a 3-min baseline, 10-min baseline with boot, 10-min feedback with boot (6% asymmetry exaggeration in the first session and personalized in the second), 5-min post feedback with boot, and 3-min post feedback without boot. A proportional-integral (PI) controller was used to maintain a specified step-length asymmetry by changing the tread speed ratios during the 10-min feedback period. After the first session, a linear model between baseline asymmetry exaggeration and post-intervention asymmetry improvement was utilized to develop a relationship between target exaggeration and target post-intervention asymmetry. In the second session, this model predicted a necessary target asymmetry exaggeration to replace the original 6%. This prediction was intended to result in a highly symmetric post-intervention step length. Results and discussion Eleven out of 14 participants (78.6%) developed a successful relationship between asymmetry exaggeration and decreased asymmetry in the post-intervention period of the first session. Seven out of the 11 participants (63.6%) in this successful correlation group had second session post-intervention asymmetries of < 3.5%. Conclusions The use of a PI controller to modulate split-belt tread speeds demonstrated itself to be a viable method for individualizing split-belt treadmill training.  more » « less
Award ID(s):
1910434
NSF-PAR ID:
10355104
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Volume:
19
Issue:
1
ISSN:
1743-0003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stroke is a major global issue, affecting millions every year. When a stroke occurs, survivors are often left with physical disabilities or difficulties, frequently marked by abnormal gait. Post-stroke gait normally presents as one of or a combination of unilaterally shortened step length, decreased dorsiflexion during swing phase, and decreased walking speed. These factors lead to an increased chance of falling and an overall decrease in quality of life due to a reduced ability to locomote quickly and safely under one’s own power. Many current rehabilitation techniques fail to show lasting results that suggest the potential for producing permanent changes. As technology has advanced, robot-assisted rehabilitation appears to have a distinct advantage, as the precision and repeatability of such an intervention are not matched by conventional human-administered therapy. The possible role in gait rehabilitation of the Variable Stiffness Treadmill (VST), a unique, robotic treadmill, is further investigated in this paper. The VST is a split-belt treadmill that can reduce the vertical stiffness of one of the belts, while the other belt remains rigid. In this work, we show that the repeated unilateral stiffness perturbations created by this device elicit an aftereffect of increased step length that is seen for over 575 gait cycles with healthy subjects after a single 10-min intervention. These long aftereffects are currently unmatched in the literature according to our knowledge. This step length increase is accompanied by kinematics and muscle activity aftereffects that help explain functional changes and have their own independent value when considering the characteristics of post-stroke gait. These results suggest that repeated unilateral stiffness perturbations could possibly be a useful form of post-stroke gait rehabilitation. 
    more » « less
  2. Abstract Background

    Asymmetric walking gait impairs activities of daily living in neurological patient populations, increases their fall risk, and leads to comorbidities. Accessible, long-term rehabilitation methods are needed to help neurological patients restore symmetrical walking patterns. This study aimed to determine if a passive unilateral hip exosuit can modify an induced asymmetric walking gait pattern. We hypothesized that a passive hip exosuit would diminish initial- and post-split-belt treadmill walking after-effects in healthy young adults.

    Methods

    We divided 15 healthy young adults evenly between three experimental groups that each completed a baseline trial, an adaptation period with different interventions for each group, and a post-adaptation trial. To isolate the contribution of the exosuit we compared a group adapting to the exosuit and split-belt treadmill (Exo-Sb) to groups adapting to exosuit-only (Exo-only) and split-belt only (Sb-only) conditions. The independent variables step length, stance time, and swing time symmetry were analyzed across five timepoints (baseline, early- and late adaptation, and early- and late post-adaptation) using a 3 × 5 mixed ANOVA.

    Results

    We found significant interaction and time effects on step length, stance time and swing time symmetry. Sb-only produced increased step length asymmetry at early adaptation compared to baseline (p < 0.0001) and an after-effect with increased asymmetry at early post-adaptation compared to baseline (p < 0.0001). Exo-only increased step length asymmetry (in the opposite direction as Sb-only) at early adaptation compared to baseline (p = 0.0392) but did not influence the participants sufficiently to result in a post-effect. Exo-Sb produced similar changes in step length asymmetry in the same direction as Sb-only (p = 0.0014). However, in contrast to Sb-only there was no significant after-effect between early post-adaptation and baseline (p = 0.0885).

    Conclusion

    The passive exosuit successfully diminished asymmetrical step length after-effects induced by the split-belt treadmill in Exo-Sb. These results support the passive exosuit’s ability to alter walking gait patterns.

     
    more » « less
  3. null (Ed.)
    Abstract Background Asymmetric gait post-stroke is associated with decreased mobility, yet individuals with chronic stroke often self-select an asymmetric gait despite being capable of walking more symmetrically. The purpose of this study was to test whether self-selected asymmetry could be explained by energy cost minimization. We hypothesized that short-term deviations from self-selected asymmetry would result in increased metabolic energy consumption, despite being associated with long-term rehabilitation benefits. Other studies have found no difference in metabolic rate across different levels of enforced asymmetry among individuals with chronic stroke, but used methods that left some uncertainty to be resolved. Methods In this study, ten individuals with chronic stroke walked on a treadmill at participant-specific speeds while voluntarily altering step length asymmetry. We included only participants with clinically relevant self-selected asymmetry who were able to significantly alter asymmetry using visual biofeedback. Conditions included targeting zero asymmetry, self-selected asymmetry, and double the self-selected asymmetry. Participants were trained with the biofeedback system in one session, and data were collected in three subsequent sessions with repeated measures. Self-selected asymmetry was consistent across sessions. A similar protocol was conducted among unimpaired participants. Results Participants with chronic stroke substantially altered step length asymmetry using biofeedback, but this did not affect metabolic rate (ANOVA, p  = 0.68). In unimpaired participants, self-selected step length asymmetry was close to zero and corresponded to the lowest metabolic energy cost (ANOVA, p  = 6e-4). While the symmetry of unimpaired gait may be the result of energy cost minimization, self-selected step length asymmetry in individuals with chronic stroke cannot be explained by a similar least-effort drive. Conclusions Interventions that encourage changes in step length asymmetry by manipulating metabolic energy consumption may be effective because these therapies would not have to overcome a metabolic penalty for altering asymmetry. 
    more » « less
  4. null (Ed.)
    Walking requires control of where and when to step for stable interlimb coordination. Motorized split-belt treadmills which constrain each leg to move at different speeds lead to adaptive changes to limb coordination that result in after-effects (e.g. gait asymmetry) on return to normal treadmill walking. These after-effects indicate an underlying neural adaptation. Here, we assessed the transfer of motorized split-belt treadmill adaptations with a custom non-motorized split-belt treadmill where each belt can be self-propelled at different speeds. Transfer was indicated by the presence of after-effects in step length, foot placement and step timing differences. Ten healthy participants adapted on a motorized split-belt treadmill (2 : 1 speed ratio) and were then assessed for after-effects during subsequent non-motorized treadmill and motorized tied-belt treadmill walking. We found that after-effects in step length difference during transfer to non-motorized split-belt walking were primarily associated with step time differences. Conversely, residual after-effects during motorized tied-belt walking following transfer were associated with foot placement differences. Our data demonstrate decoupling of adapted spatial and temporal locomotor control during transfer to a novel context, suggesting that foot placement and step timing control can be independently modulated during walking. 
    more » « less
  5. Abstract Background

    Individualized, targeted, and intense training is the hallmark of successful gait rehabilitation in people post-stroke. Specifically, increasing use of the impaired ankle to increase propulsion during the stance phase of gait has been linked to higher walking speeds and symmetry. Conventional progressive resistance training is one method used for individualized and intense rehabilitation, but often fails to target paretic ankle plantarflexion during walking. Wearable assistive robots have successfullyassistedankle-specific mechanisms to increase paretic propulsion in people post-stroke, suggesting their potential to provide targetedresistanceto increase propulsion, but this application remains underexamined in this population. This work investigates the effects of targeted stance-phase plantarflexion resistance training with a soft ankle exosuit on propulsion mechanics in people post-stroke.

    Methods

    We conducted this study in nine individuals with chronic stroke and tested the effects of three resistive force magnitudes on peak paretic propulsion, ankle torque, and ankle power while participants walked on a treadmill at their comfortable walking speeds. For each force magnitude, participants walked for 1 min while the exosuit was inactive, 2 min with active resistance, and 1 min with the exosuit inactive, in sequence. We evaluated changes in gait biomechanics during the active resistance and post-resistance sections relative to the initial inactive section.

    Results

    Walking with active resistance increased paretic propulsion by more than the minimal detectable change of 0.8 %body weight at all tested force magnitudes, with an average increase of 1.29 ± 0.37 %body weight at the highest force magnitude. This improvement corresponded to changes of 0.13 ± 0.03 N m kg− 1in peak biological ankle torque and 0.26 ± 0.04 W kg− 1in peak biological ankle power. Upon removal of resistance, propulsion changes persisted for 30 seconds with an improvement of 1.49 ± 0.58 %body weight after the highest resistance level and without compensatory involvement of the unresisted joints or limb.

    Conclusions

    Targeted exosuit-applied functional resistance of paretic ankle plantarflexors can elicit the latent propulsion reserve in people post-stroke. After-effects observed in propulsion highlight the potential for learning and restoration of propulsion mechanics. Thus, this exosuit-based resistive approach may offer new opportunities for individualized and progressive gait rehabilitation.

     
    more » « less