skip to main content


Title: The Radcliffe wave as the gas spine of the Orion arm
The Radcliffe wave is a ∼3 kpc long coherent gas structure containing most of the star-forming complexes near the Sun. In this Letter we aim to find a Galactic context for the Radcliffe wave by looking into a possible relationship between the gas structure and the Orion (local) arm. We use catalogs of massive stars and young open clusters based on Gaia Early Data Release 3 (EDR3) astrometry, in conjunction with kiloparsec-scale 3D dust maps, to investigate the Galactic XY spatial distributions of gas and young stars. We find a quasi-parallel offset between the luminous blue stars and the Radcliffe wave, in that massive stars and clusters are found essentially inside and downstream from the Radcliffe wave. We examine this offset in the context of color gradients observed in the spiral arms of external galaxies, where the interplay between density wave theory, spiral shocks, and triggered star formation has been used to interpret this particular arrangement of gas and dust as well as OB stars, and outline other potential explanations as well. We hypothesize that the Radcliffe wave constitutes the gas reservoir of the Orion (local) arm, and that it presents itself as a prime laboratory to study the interface between Galactic structure, the formation of molecular clouds in the Milky Way, and star formation.  more » « less
Award ID(s):
1908419
NSF-PAR ID:
10355110
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
664
ISSN:
0004-6361
Page Range / eLocation ID:
L13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We combine JWST observations with Atacama Large Millimeter/submillimeter Array CO and Very Large Telescope MUSE Hαdata to examine off-spiral arm star formation in the face-on, grand-design spiral galaxy NGC 628. We focus on the northern spiral arm, around a galactocentric radius of 3–4 kpc, and study two spurs. These form an interesting contrast, as one is CO-rich and one CO-poor, and they have a maximum azimuthal offset in MIRI 21μm and MUSE Hαof around 40° (CO-rich) and 55° (CO-poor) from the spiral arm. The star formation rate is higher in the regions of the spurs near spiral arms, but the star formation efficiency appears relatively constant. Given the spiral pattern speed and rotation curve of this galaxy and assuming material exiting the arms undergoes purely circular motion, these offsets would be reached in 100–150 Myr, significantly longer than the 21μm and Hαstar formation timescales (both < 10 Myr). The invariance of the star formation efficiency in the spurs versus the spiral arms indicates massive star formation is not only triggered in spiral arms, and cannot simply occur in the arms and then drift away from the wave pattern. These early JWST results show that in situ star formation likely occurs in the spurs, and that the observed young stars are not simply the “leftovers” of stellar birth in the spiral arms. The excellent physical resolution and sensitivity that JWST can attain in nearby galaxies will well resolve individual star-forming regions and help us to better understand the earliest phases of star formation.

     
    more » « less
  2. It remains unclear what sets the efficiency with which molecular gas transforms into stars. Here we present a new VLA map of the spiral galaxy M 51 in 33 GHz radio continuum, an extinction-free tracer of star formation, at 3″ scales (∼100 pc). We combined this map with interferometric PdBI/NOEMA observations of CO(1–0) and HCN(1–0) at matched resolution for three regions in M 51 (central molecular ring, northern and southern spiral arm segments). While our measurements roughly fall on the well-known correlation between total infrared and HCN luminosity, bridging the gap between Galactic and extragalactic observations, we find systematic offsets from that relation for different dynamical environments probed in M 51; for example, the southern arm segment is more quiescent due to low star formation efficiency (SFE) of the dense gas, despite its high dense gas fraction. Combining our results with measurements from the literature at 100 pc scales, we find that the SFE of the dense gas and the dense gas fraction anti-correlate and correlate, respectively, with the local stellar mass surface density. This is consistent with previous kpc-scale studies. In addition, we find a significant anti-correlation between the SFE and velocity dispersion of the dense gas. Finally, we confirm that a correlation also holds between star formation rate surface density and the dense gas fraction, but it is not stronger than the correlation with dense gas surface density. Our results are hard to reconcile with models relying on a universal gas density threshold for star formation and suggest that turbulence and galactic dynamics play a major role in setting how efficiently dense gas converts into stars. 
    more » « less
  3. Abstract

    Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0.″3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2–1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk (Rgal∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-“cloud” motion between gas peaks;ScousePydecomposition reveals multiple components with line widths of 〈σCO,scouse〉 ≈ 19 km s−1and surface densities ofΣH2,scouse800Mpc2, similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ.

     
    more » « less
  4. ABSTRACT

    Young massive clusters (YMCs) are compact (≲1 pc), high-mass (>104 M⊙) stellar systems of significant scientific interest. Due to their rarity and rapid formation, we have very few examples of YMC progenitor gas clouds before star formation has begun. As a result, the initial conditions required for YMC formation are uncertain. We present high resolution (0.13 arcsec, ∼1000 au) ALMA observations and Mopra single-dish data, showing that Galactic Centre dust ridge ‘Cloud d’ (G0.412 + 0.052, mass = 7.6 × 104 M⊙, radius = 3.2 pc) has the potential to become an Arches-like YMC (104 M⊙, r ∼ 1 pc), but is not yet forming stars. This would mean it is the youngest known pre-star-forming massive cluster and therefore could be an ideal laboratory for studying the initial conditions of YMC formation. We find 96 sources in the dust continuum, with masses ≲3 M⊙ and radii of ∼103 au. The source masses and separations are more consistent with thermal rather than turbulent fragmentation. It is not possible to unambiguously determine the dynamical state of most of the sources, as the uncertainty on virial parameter estimates is large. We find evidence for large-scale (∼1 pc) converging gas flows, which could cause the cloud to grow rapidly, gaining 104 M⊙ within 105 yr. The highest density gas is found at the convergent point of the large-scale flows. We expect this cloud to form many high-mass stars, but find no high-mass starless cores. If the sources represent the initial conditions for star formation, the resulting initial mass function will be bottom heavy.

     
    more » « less
  5. ABSTRACT

    In the hierarchical view of star formation, giant molecular clouds (GMCs) undergo fragmentation to form small-scale structures made up of stars and star clusters. Here we study the connection between young star clusters and cold gas across a range of extragalactic environments by combining the high resolution (1″) PHANGS–ALMA catalogue of GMCs with the star cluster catalogues from PHANGS–HST. The star clusters are spatially matched with the GMCs across a sample of 11 nearby star-forming galaxies with a range of galactic environments (centres, bars, spiral arms, etc.). We find that after 4 − 6 Myr the star clusters are no longer associated with any gas clouds. Additionally, we measure the autocorrelation of the star clusters and GMCs as well as their cross-correlation to quantify the fractal nature of hierarchical star formation. Young (≤10 Myr) star clusters are more strongly autocorrelated on kpc and smaller spatial scales than the $\gt \, 10$ Myr stellar populations, indicating that the hierarchical structure dissolves over time.

     
    more » « less