Abstract Changing wildfire regimes in the western US and other fire-prone regions pose considerable risks to human health and ecosystem function. However, our understanding of wildfire behavior is still limited by a lack of data products that systematically quantify fire spread, behavior and impacts. Here we develop a novel object-based system for tracking the progression of individual fires using 375 m Visible Infrared Imaging Radiometer Suite active fire detections. At each half-daily time step, fire pixels are clustered according to their spatial proximity, and are either appended to an existing active fire object or are assigned to a new object. This automatic system allows us to update the attributes of each fire event, delineate the fire perimeter, and identify the active fire front shortly after satellite data acquisition. Using this system, we mapped the history of California fires during 2012–2020. Our approach and data stream may be useful for calibration and evaluation of fire spread models, estimation of near-real-time wildfire emissions, and as means for prescribing initial conditions in fire forecast models. 
                        more » 
                        « less   
                    
                            
                            WildfireDB: An Open-Source Dataset Connecting Wildfire Occurrence with Relevant Determinants
                        
                    
    
            Modeling fire spread is critical in fire risk management. Creating data-driven models to forecast spread remains challenging due to the lack of comprehensive data sources that relate fires with relevant covariates. We present the first comprehensive and open-source dataset that relates historical fire data with relevant covariates such as weather, vegetation, and topography. Our dataset, named \textitWildfireDB, contains over 17 million data points that capture how fires spread in the continental USA in the last decade. In this paper, we describe the algorithmic approach used to create and integrate the data, describe the dataset, and present benchmark results regarding data-driven models that can be learned to forecast the spread of wildfires. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1814958
- PAR ID:
- 10355140
- Date Published:
- Journal Name:
- NeurIPS Thirty-fifth Annual Conference on Neural Information Processing Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. In the western United States, prolonged drought, a warming climate, and historical fuel buildup have contributed to larger and more intense wildfires as well as to longer fire seasons. As these costly wildfires become more common, new tools and methods are essential for improving our understanding of the evolution of fires and how extreme weather conditions, including heat waves, windstorms, droughts, and varying levels of active-fire suppression, influence fire spread. Here, we develop the Geostationary Operational Environmental Satellites (GOES)-Observed Fire Event Representation (GOFER) algorithm to derive the hourly fire progression of large wildfires and create a product of hourly fire perimeters, active-fire lines, and fire spread rates. Using GOES-East and GOES-West geostationary satellite detections of active fires, we test the GOFER algorithm on 28 large wildfires in California from 2019 to 2021. The GOFER algorithm includes parameter optimizations for defining the burned-to-unburned boundary and correcting for the parallax effect from elevated terrain. We evaluate GOFER perimeters using 12 h data from the Visible Infrared Imaging Radiometer Suite (VIIRS)-derived Fire Event Data Suite (FEDS) and final fire perimeters from the California's Fire and Resource Assessment Program (FRAP). Although the GOES imagery used to derive GOFER has a coarser resolution (2 km at the Equator), the final fire perimeters from GOFER correspond reasonably well to those obtained from FRAP, with a mean Intersection-over-Union (IoU) of 0.77, in comparison to 0.83 between FEDS and FRAP; the IoU indicates the area of overlap over the area of the union relative to the reference perimeters, in which 0 is no agreement and 1 is perfect agreement. GOFER fills a key temporal gap present in other fire tracking products that rely on low-Earth-orbit imagery, where perimeters are available at intervals of 12 h or longer or at ad hoc intervals from aircraft overflights. This is particularly relevant when a fire spreads rapidly, such as at maximum hourly spread rates of over 5 km h−1. Our GOFER algorithm for deriving the hourly fire progression using GOES can be applied to large wildfires across North and South America and reveals considerable variability in the rates of fire spread on diurnal timescales. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates (https://doi.org/10.5281/zenodo.8327264, Liu et al., 2023).more » « less
- 
            Abstract Extreme wind‐driven autumn wildfires are hazardous to life and property, due to their rapid rate of spread. Recent catastrophic autumn wildfires in the western United States co‐occurred with record‐ or near‐record autumn fire weather indices that are a byproduct of extreme fuel dryness and strong offshore dry winds. Here, we use a formal, probabilistic, extreme event attribution analysis to investigate the anthropogenic influence on extreme autumn fire weather in 2017 and 2018. We show that while present‐day anthropogenic climate change has slightly decreased the prevalence of strong offshore downslope winds, it has increased the likelihood of extreme fire weather indices by 40% in areas where recent autumn wind‐driven fires have occurred in northern California and Oregon. The increase was primarily through increased autumn fuel aridity and warmer temperatures during dry wind events. These findings illustrate that anthropogenic climate change is exacerbating autumn fire weather extremes that contribute to high‐impact catastrophic fires in populated regions of the western US.more » « less
- 
            Abstract Patterns of energy and available moisture can vary over small (<1 km) distances in mountainous terrain. Information on fuel and soil moisture conditions that resolves this variation could help to inform fire and drought management decisions. Here, we describe the development of TOPOFIRE, a web-based mapping system designed to provide finely resolved information on soil water balance, drought, and wildfire danger information for the contiguous United States. We developed 8-arc-second-resolution (~250 meter) daily historical, near real-time, and 4-day forecast radiation, temperature, humidity, and snow water equivalent data and used these grids to calculate a suite of drought and wildfire danger indices. Large differences in shortwave radiation and surface air temperature with aspect contribute to greater snow accumulation and delays in melt timing on north-facing slopes, delaying fuel conditioning on shaded slopes. These datasets will help advance our understanding of the role of topography in wildland fire spread and ecological effects. Integration with national programs like the Wildland Fire Assessment System, the Wildland Fire Decision Support System, and drought early warning systems could support more proactive management of wildland fires and refine the characterization of drought in mountainous regions of the United States.more » « less
- 
            Modeling fire spread as an infection process is intuitive: An ignition lights a patch of fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresholds, whereby fire spreads only when fuel connectivity and infection probability are sufficiently high. These thresholds are fundamental both to managing fire and to theoretical models of fire spread, whereas applied fire models more often apply quasi-empirical approaches. Here, we resolve this tension by quantifying thresholds in fire spread locally, using field data from individual fires ( n = 1,131) in grassy ecosystems across a precipitation gradient (496 to 1,442 mm mean annual precipitation) and evaluating how these scaled regionally (across 533 sites) and across time (1989 to 2012 and 2016 to 2018) using data from Kruger National Park in South Africa. An infection model captured observed patterns in individual fire spread better than competing models. The proportion of the landscape that burned was well described by measurements of grass biomass, fuel moisture, and vapor pressure deficit. Regionally, averaging across variability resulted in quasi-linear patterns. Altogether, results suggest that models aiming to capture fire responses to global change should incorporate nonlinear fire spread thresholds but that linear approximations may sufficiently capture medium-term trends under a stationary climate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    