This content will become publicly available on July 5, 2023
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10355172
- Journal Name:
- Reports on Progress in Physics
- Volume:
- 85
- Issue:
- 8
- Page Range or eLocation-ID:
- 084201
- ISSN:
- 0034-4885
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel ep → τX , within the model-independent framework of the Standard Model Effective Field Theory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various τ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in τ - e transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from pp → eτX at the Large Hadron Collider to decays of B mesons and τ leptons, such as τ → eγ , τ → eℓ + ℓ − , and crucially the hadronic modes τ → eY with Y ∈ π, K, ππ, Kπ, …. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by τ decays, while operators involving the c and b quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations basedmore »
-
Abstract The standard model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown that a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton–proton collision data collected with the LHCb detector at CERN’s Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the standard model, such as a new fundamental interaction between quarks and leptons.
-
A bstract The two kaon factories, KOTO and NA62, are at the cutting edge of the intensity frontier, with an unprecedented numbers of long lived and charged Kaons, ∼ 10 13 , being measured and analyzed. These experiments have currently a unique opportunity to search for dark sectors. In this paper, we demonstrate that searches done at KOTO and NA62 are complementary, both probing uncharted territories. We consider two qualitatively different physics cases. In the first, we analyze models of axion-like-particles (ALP) which couple to gluons or electroweak gauge bosons. In the second, we introduce a model based on an approximate strange flavor symmetry that leads to a strong violation of the Grossman-Nir bound. For the first scenario, we design a new search strategy for the KOTO experiment, K L → π 0 a → 4 γ . Its expected sensitivity on the branching ratio is at the level of 10 − 9 . This demonstrates the great potential of KOTO as a discovery machine. In addition, we revisit other bounds on ALPs from Kaon factories, highlighting the main sources of theoretical uncertainty, and collider experiments, and show new projections. For the second scenario, we show that the model maymore »
-
Abstract The future
Ricochet experiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, theRicochet Collaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present theRicochet neutron background characterization using He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to the$$^3$$ Ricochet Geant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the futureRicochet experiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness ofmore » -
We describe the outcome of a data challenge conducted as part of the Dark Machines (https://www.darkmachines.org) initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims to detect signals of new physics at the Large Hadron Collider (LHC) using unsupervised machine learning algorithms. First, we propose how an anomaly score could be implemented to define model-independent signal regions in LHC searches. We define and describe a large benchmark dataset, consisting of >1 billion simulated LHC events corresponding to 10\, fb^{-1} 10 f b − 1 of proton-proton collisions at a center-of-mass energy of 13 TeV. We then review a wide range of anomaly detection and density estimation algorithms, developed in the context of the data challenge, and we measure their performance in a set of realistic analysis environments. We draw a number of useful conclusions that will aid the development of unsupervised new physics searches during the third run of the LHC, and provide our benchmark dataset for future studies at https://www.phenoMLdata.org. Code to reproduce the analysis is provided at https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge.