skip to main content


Title: Development and quantitative analysis of a biosensor based on the Arabidopsis SWEET1 sugar transporter
SWEETs are transporters with homologs in Archeae, plants, some fungi, and animals. As the only transporters known to facilitate the cellular release of sugars in plants, SWEETs play critical roles in the allocation of sugars from photosynthetic leaves to storage tissues in seeds, fruits, and tubers. Here, we report the design and use of genetically encoded biosensors to measure the activity of SWEETs. We created a SweetTrac1 sensor by inserting a circularly permutated green fluorescent protein into the Arabidopsis SWEET1, resulting in a chimera that translates substrate binding during the transport cycle into detectable changes in fluorescence intensity. We demonstrate that a combination of cell sorting and bioinformatics can accelerate the design of biosensors and formulate a mass action kinetics model to correlate the fluorescence response of SweetTrac1 with the transport of glucose. Our analysis suggests that SWEETs are low-affinity, symmetric transporters that can rapidly equilibrate intra- and extracellular concentrations of sugars. This approach can be extended to SWEET homologs and other transporters.  more » « less
Award ID(s):
1942722
NSF-PAR ID:
10355187
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
4
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields. 
    more » « less
  2. Sugars Will Eventually be Exported Transporters (SWEETs) are central for sugar allocation in plants. The SWEET family has approximately 20 homologs in most plant genomes, and despite extensive research on their structures and molecular functions, it is still unclear how diverse SWEETs recognize different substrates. Previous work using SweetTrac1, a biosensor constructed by the intramolecular fusion of a conformation-sensitive fluorescent protein in the plasma membrane transporter SWEET1 from Arabidopsis thaliana, identified common features in the transporter’s substrates. Here, we report SweetTrac2, a new biosensor based on the Arabidopsis vacuole membrane transporter SWEET2, and use it to explore the substrate specificity of this second protein. Our results show that SWEET1 and SWEET2 recognize similar substrates but some with different affinities. Sequence comparison and mutagenesis analysis support the conclusion that the differences in affinity depend on nonspecific interactions involving previously uncharacterized residues in the substrate-binding pocket. Furthermore, SweetTrac2 can be an effective tool for monitoring sugar transport at vacuolar membranes that would be otherwise challenging to study. 
    more » « less
  3. Summary

    Plant breeders have developed crop plants that are resistant to pests, but the continual evolution of pathogens creates the need to iteratively develop new control strategies. Molecular tools have allowed us to gain deep insights into disease responses, allowing for more efficient, rational engineering of crops that are more robust or resistant to a greater number of pathogen variants. Here we describe the roles ofSWEETandSTPtransporters, membrane proteins that mediate transport of sugars across the plasma membrane. We discuss how these transporters may enhance or restrict disease through controlling the level of nutrients provided to pathogens and whether the transporters play a role in sugar signaling for disease resistance. This review indicates open questions that require further research and proposes the use of genome editing technologies for engineering disease resistance.

     
    more » « less
  4. Sindhu Sareen (Ed.)
    Potassium (K+) is the most abundant cation that plays a crucial role in various cellular processes in plants. Plants have developed an efficient mechanism for the acquisition of K+ when grown in K+ deficient or saline soils. A total of 47 K+ transport gene homologs (27 HAKs, 4 HKTs, 2 KEAs, 9 AKTs, 2 KATs, 2 TPCs, and 1 VDPC) have been identified in Sorghum bicolor. Of 47 homologs, 33 were identified as K+ transporters and the remaining 14 as K+ channels. Chromosome 2 has been found as the hotspot of K+ transporters with 9 genes. Phylogenetic analysis revealed the conservation of sorghum K+ transport genes akin to Oryza sativa. Analysis of regulatory elements indicates the key roles that K+ transport genes play under different biotic and abiotic stress conditions. Digital expression data of different developmental stages disclosed that expressions were higher in milk, flowering, and tillering stages. Expression levels of the genes SbHAK27 and SbKEA2 were higher during milk, SbHAK17, SbHAK11, SbHAK18, and SbHAK7 during flowering, SbHAK18, SbHAK10, and 23 other gene expressions were elevated during tillering inferring the important role that K+ transport genes play during plant growth and development. Differential transcript expression was observed in different tissues like root, stem, and leaf under abiotic stresses such as salt, drought, heat, and cold stresses. Collectively, the in-depth genome-wide analysis and differential transcript profiling of K+ transport genes elucidate their role in ion homeostasis and stress tolerance mechanisms. 
    more » « less
  5. Abstract

    Current practices for delivering agrochemicals are inefficient, with only a fraction reaching the intended targets in plants. The surfaces of nanocarriers are functionalized with sucrose, enabling rapid and efficient foliar delivery into the plant phloem, a vascular tissue that transports sugars, signaling molecules, and agrochemicals through the whole plant. The chemical affinity of sucrose molecules to sugar membrane transporters on the phloem cells enhances the uptake of sucrose‐coated quantum dots (sucQD) and biocompatible carbon dots with β‐cyclodextrin molecular baskets (suc‐β‐CD) that can carry a wide range of agrochemicals. The QD and CD fluorescence emission properties allowed detection and monitoring of rapid translocation (<40 min) in the vasculature of wheat leaves by confocal and epifluorescence microscopy. The suc‐β‐CDs more than doubled the delivery of chemical cargoes into the leaf vascular tissue. Inductively coupled plasma mass spectrometry (ICP‐MS) analysis showed that the fraction of sucQDs loaded into the phloem and transported to roots is over 6.8 times higher than unmodified QDs. The sucrose coating of nanoparticles approach enables unprecedented targeted delivery to roots with ≈70% of phloem‐loaded nanoparticles delivered to roots. The use of plant biorecognition molecules mediated delivery provides an efficient approach for guiding nanocarriers containing agrochemicals to the plant vasculature and whole plants.

     
    more » « less