skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximizing Fair Content Spread via Edge Suggestion in Social Networks
Content spread inequity is a potential unfairness issue in online social networks, disparately impacting minority groups. In this paper, we view friendship suggestion, a common feature in social network platforms, as an opportunity to achieve an equitable spread of content. In particular, we propose to suggest a subset of potential edges (currently not existing in the network but likely to be accepted) that maximizes content spread while achieving fairness. Instead of re-engineering the existing systems, our proposal builds a fairness wrapper on top of the existing friendship suggestion components. We prove the problem is NP-hard and inapproximable in polynomial time unless P=NP. Therefore, allowing relaxation of the fairness constraint, we propose an algorithm based on LP-relaxation and randomized rounding with fixed approximation ratios on fairness and content spread. We provide multiple optimizations, further improving the performance of our algorithm in practice. Besides, we propose a scalable algorithm that dynamically adds subsets of nodes, chosen via iterative sampling, and solves smaller problems corresponding to these nodes. Besides theoretical analysis, we conduct comprehensive experiments on real and synthetic data sets. Across different settings, our algorithms found solutions with near-zero unfairness while significantly increasing the content spread. Our scalable algorithm could process a graph with half a million nodes on a single machine, reducing the unfairness to around 0.0004 while lifting content spread by 43%.  more » « less
Award ID(s):
2107290
PAR ID:
10355229
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
15
Issue:
11
ISSN:
2150-8097
Page Range / eLocation ID:
2692 - 2705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recommendation systems have been used in many domains, and in recent years, ethical problems associated with such systems have gained serious attention. The problem of unfairness in friendship or link recommendation systems in social networks has begun attracting attention, as such unfairness can cause problems like segmentation and echo chambers. One challenge in this problem is that there are many fairness metrics for networks, and existing methods only consider the improvement of a single specific fairness indicator. In this work, we model the fair link prediction problem as a multi-armed bandit problem. We propose FairLink, a multi-armed bandit based framework that predicts new edges that are both accurate and well-behaved with respect to a fairness property of choice. This method allows the user to specify the desired fairness metric. Experiments on five real-world datasets show that FairLink can achieve a significant fairness improvement as compared to a standard recommendation algorithm, with only a small reduction in accuracy. 
    more » « less
  2. In social network, a person located at the periphery region (marginal node) is likely to be treated unfairly when compared with the persons at the center. While existing fairness works on graphs mainly focus on protecting sensitive attributes (e.g., age and gender), the fairness incurred by the graph structure should also be given attention. On the other hand, the information aggregation mechanism of graph neural networks amplifies such structure unfairness, as marginal nodes are often far away from other nodes. In this paper, we focus on novel fairness incurred by the graph structure on graph neural networks, named structure fairness. Specifically, we first analyzed multiple graphs and observed that marginal nodes in graphs have a worse performance of downstream tasks than others in graph neural networks. Motivated by the observation, we propose Structural Fair Graph Neural Network (SFairGNN), which combines neighborhood expansion based structure debiasing with hop-aware attentive information aggregation to achieve structure fairness. Our experiments show SFairGNN can significantly improve structure fairness while maintaining overall performance in the downstream tasks. 
    more » « less
  3. null (Ed.)
    While social networks are widely used as a media for information diffusion, attackers can also strategically employ analytical tools, such as influence maximization, to maximize the spread of adversarial content through the networks. We investigate the problem of limiting the diffusion of negative information by blocking nodes and edges in the network. We formulate the interaction between the defender and the attacker as a Stackelberg game where the defender first chooses a set of nodes to block and then the attacker selects a set of seeds to spread negative information from. This yields an extremely complex bi- level optimization problem, particularly since even the standard influence measures are difficult to compute. Our approach is to approximate the attacker’s problem as the maximum node domination problem. To solve this problem, we first develop a method based on integer programming combined with constraint generation. Next, to improve scalability, we develop an approximate solution method that represents the attacker’s problem as an integer program, and then combines relaxation with duality to yield an upper bound on the defender’s objective that can be computed using mixed integer linear programming. Finally, we propose an even more scalable heuristic method that prunes nodes from the consideration set based on their degree. Extensive experiments demonstrate the efficacy of our approaches. 
    more » « less
  4. Influence Maximization (IM), which seeks a small set of important nodes that spread the influence widely into the network, is a fundamental problem in social networks. It finds applications in viral marketing, epidemic control, and assessing cascading failures within complex systems. Despite the huge amount of effort, finding near-optimal solutions for IM is difficult due to its NP-completeness. In this paper, we propose the first social quantum computing approaches for IM, aiming to retrieve near-optimal solutions. We propose a two-phase algorithm that 1) converts IM into a Max-Cover instance and 2) provides efficient quadratic unconstrained binary optimization formulations to solve the Max-Cover instance on quantum annealers. Our experiments on the state-of-the-art D-Wave annealer indicate better solution quality compared to classical simulated annealing, suggesting the potential of applying quantum annealing to find high-quality solutions for IM. 
    more » « less
  5. The widespread use of Artificial Intelligence (AI) based decision-making systems has raised a lot of concerns regarding potential discrimination, particularly in domains with high societal impact. Most existing fairness research focused on tackling bias relies heavily on the presence of class labels, an assumption that often mismatches real-world scenarios, which ignores the ubiquity of censored data. Further, existing works regard group fairness and individual fairness as two disparate goals, overlooking their inherent interconnection, i.e., addressing one can degrade the other. This paper proposes a novel unified method that aims to mitigate group unfairness under censorship while curbing the amplification of individual unfairness when enforcing group fairness constraints. Specifically, our introduced ranking algorithm optimizes individual fairness within the bounds of group fairness, uniquely accounting for censored information. Evaluation across four benchmark tasks confirms the effectiveness of our method in quantifying and mitigating both fairness dimensions in the face of censored data. 
    more » « less