Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.
more »
« less
Simulation of pH-Dependent Conformational Transitions in Membrane Proteins: The CLC-ec1 Cl−/H+ Antiporter
Intracellular transport of chloride by members of the CLC transporter family involves a coupled exchange between a Cl− anion and a proton (H+), which makes the transport function dependent on ambient pH. Transport activity peaks at pH 4.5 and stalls at neutral pH. However, a structure of the WT protein at acidic pH is not available, making it difficult to assess the global conformational rearrangements that support a pH-dependent gating mechanism. To enable modeling of the CLC-ec1 dimer at acidic pH, we have applied molecular dynamics simulations (MD) featuring a new force field modification scheme—termed an Equilibrium constant pH approach (ECpH). The ECpH method utilizes linear interpolation between the force field parameters of protonated and deprotonated states of titratable residues to achieve a representation of pH-dependence in a narrow range of physiological pH values. Simulations of the CLC-ec1 dimer at neutral and acidic pH comparing ECpH-MD to canonical MD, in which the pH-dependent protonation is represented by a binary scheme, substantiates the better agreement of the conformational changes and the final model with experimental data from NMR, cross-link and AFM studies, and reveals structural elements that support the gate-opening at pH 4.5, including the key glutamates Gluin and Gluex.
more »
« less
- Award ID(s):
- 1841758
- PAR ID:
- 10355280
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 26
- Issue:
- 22
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 6956
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Molecular dynamics (MD) simulations provide a powerful means of exploring the dynamic behavior of biomolecular systems at the atomic level. However, analyzing the vast data sets generated by MD simulations poses significant challenges. This article discusses the energy landscape visualization method (ELViM), a multidimensional reduction technique inspired by the energy landscape theory. ELViM transcends one-dimensional representations, offering a comprehensive analysis of the effective conformational phase space without the need for predefined reaction coordinates. We apply the ELViM to study the folding landscape of the antimicrobial peptide Polybia-MP1, showcasing its versatility in capturing complex biomolecular dynamics. Using dissimilarity matrices and a force-scheme approach, the ELViM provides intuitive visualizations, revealing structural correlations and local conformational signatures. The method is demonstrated to be adaptable, robust, and applicable to various biomolecular systems.more » « less
-
Archaeal group II chaperonins, also known as heat shock proteins (HSPs), are abundantly expressed in Sulfolobales. HSPα and HSPβ gene expression is upregulated during thermal shock. HSPs form large 18-mer complexes that assist in folding nascent proteins and protecting resident proteins during thermal stress. Engineered HSPs have been designed for industrial applications. Since temperature flux in the geothermal habitats of Sulfolobales impacts intracellular temperature, it follows that HSPs have developed thermotolerance. However, despite the low pH (i.e., pH < 4) typical for these habitats, intracellular pH in Sulfolobales is maintained at ~6.5. Therefore, it is not presumed that HSPs have evolved acid-tolerance. To test tolerance to low pH, HSPs were studied at various pH and temperature values. Both circular dichroism and intrinsic fluorescence indicate that HSPα and HSPβ retain structural integrity at neutral pH over a wide range of temperatures. Structural integrity is compromised for all HSPs at ultra-low pH (e.g., pH 2). Secondary structures in HSPs are resilient under mildly acidic conditions (pH 4) but Anilino naphthalene 8-sulfonate binding shows shifts in tertiary structure at lower pH. Trypsin digestion shows that the HSPβ-coh backbone is the most flexible and HSPβ is the most resilient. Overall, results suggest that HSPα and HSPβ exhibit greater thermostability than HSPβ-coh and that there are limits to HSP acid-tolerance. Molecular dynamics (MD) simulations complement the wet lab data. Specifically, MD suggests that the HSPβ secondary structure is the most stable. Also, despite similarities in pH- and temperature-dependent behavior, there are clear differences in how each HSP subtype is perturbed.more » « less
-
Gelsolin is a calcium (Ca2+) dependent, pH sensitive actin-binding protein that regulates actin filament dynamics to remodel the actin cytoskeleton. It is known that gelsolin binding induces conformational changes of actin filaments, leading to filament severing. However, the influence of physiological conditions, such as pH variations, on gelsolin-mediated filament severing activities, mechanics and conformations remains unclear despite their role in actin-actin interactions. Using Total Internal Reflection Fluorescence (TIRF) microscopy imaging and pyrene fluorescence assays, we demonstrate that filament severing efficiencies by gelsolin are enhanced in acidic conditions. In addition, analysis of filament thermal fluctuations using TIRF reveals that gelsolin binding stiffens actin filaments. Furthermore, we show that gelsolin binding induces conformational changes in filaments by measuring the filament half-pitch using high resolution Atomic Force Microscopy imaging. Together, our results suggest that pH modulation plays a key role in gelsolin-mediated filament severing activities, bending mechanics, and conformational changes, which have implications in many cellular processes including cell motility and morphogenesis.more » « less
-
null (Ed.)Intrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores. The resulting BaxE5 peptide efficiently permeabilizes membranes at acidic pH, showing low permeabilization at neutral pH. Atomic force microscopy (AFM) imaging showed that at acidic pH BaxE5 established several membrane remodeling modalities that progressively disturbed the integrity of the lipid bilayer. The AFM data offers vistas on the membrane disruption process, which starts with pore formation and progresses through localized exposure of membrane monolayers leading to stable and thin (16 Å) lipid-peptide complexes. The different types of membrane morphology observed in the presence of BaxE5 suggest that the peptide can establish different types of membrane interaction. BaxE5 adopts a rare unstructured conformation when bound to membranes, which might facilitate the dynamic transition between those different states, and then promote membrane digestion.more » « less
An official website of the United States government

