skip to main content

Title: Highlights and Outcomes of the 2021 Global Community Consultation
International collaboration between collections, aggregators, and researchers within the biodiversity community and beyond is becoming increasingly important in our efforts to support biodiversity, conservation and the life of the planet. The social, technical, logistical and financial aspects of an equitable biodiversity data landscape – from workforce training and mobilization of linked specimen data, to data integration, use and publication – must be considered globally and within the context of a growing biodiversity crisis. In recent years, several initiatives have outlined paths forward that describe how digital versions of natural history specimens can be extended and linked with associated data. In the United States, Webster (2017) presented the “extended specimen”, which was expanded upon by Lendemer et al. (2019) through the work of the Biodiversity Collections Network (BCoN). At the same time, a “digital specimen” concept was developed by DiSSCo in Europe (Hardisty 2020). Both the extended and digital specimen concepts depict a digital proxy of an analog natural history specimen, whose digital nature provides greater capabilities such as being machine-processable, linkages with associated data, globally accessible information-rich biodiversity data, improved tracking, attribution and annotation, additional opportunities for data use and cross-disciplinary collaborations forming the basis for FAIR (Findable, Accessible, Interoperable, more » Reproducible) and equitable sharing of benefits worldwide, and innumerable other advantages, with slight variation in how an extended or digital specimen model would be executed. Recognizing the need to align the two closely-related concepts, and to provide a place for open discussion around various topics of the Digital Extended Specimen (DES; the current working name for the joined concepts), we initiated a virtual consultation on the discourse platform hosted by the Alliance for Biodiversity Knowledge through GBIF. This platform provided a forum for threaded discussions around topics related and relevant to the DES. The goals of the consultation align with the goals of the Alliance for Biodiversity Knowledge: expand participation in the process, build support for further collaboration, identify use cases, identify significant challenges and obstacles, and develop a comprehensive roadmap towards achieving the vision for a global specification for data integration. In early 2021, Phase 1 launched with five topics: Making FAIR data for specimens accessible; Extending, enriching and integrating data; Annotating specimens and other data; Data attribution; and Analyzing/mining specimen data for novel applications. This round of full discussion was productive and engaged dozens of contributors, with hundreds of posts and thousands of views. During Phase 1, several deeper, more technical, or additional topics of relevance were identified and formed the foundation for Phase 2 which began in May 2021 with the following topics: Robust access points and data infrastructure alignment; Persistent identifier (PID) scheme(s); Meeting legal/regulatory, ethical and sensitive data obligations; Workforce capacity development and inclusivity; Transactional mechanisms and provenance; and Partnerships to collaborate more effectively. In Phase 2 fruitful progress was made towards solutions to some of these complex functional and technical long-term goals. Simultaneously, our commitment to open participation was reinforced, through increased efforts to involve new voices from allied and complementary fields. Among a wealth of ideas expressed, the community highlighted the need for unambiguous persistent identifiers and a dedicated agent to assign them, support for a fully linked system that includes robust publishing mechanisms, strong support for social structures that build trustworthiness of the system, appropriate attribution of legacy and new work, a system that is inclusive, removed from colonial practices, and supportive of creative use of biodiversity data, building a truly global data infrastructure, balancing open access with legal obligations and ethical responsibilities, and the partnerships necessary for success. These two consultation periods, and the myriad activities surrounding the online discussion, produced a wide variety of perspectives, strategies, and approaches to converging the digital and extended specimen concepts, and progressing plans for the DES -- steps necessary to improve access to research-ready data to advance our understanding of the diversity and distribution of life. Discussions continue and we hope to include your contributions to the DES in future implementation plans. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1730526
Publication Date:
NSF-PAR ID:
10355326
Journal Name:
Biodiversity Information Science and Standards
Volume:
5
ISSN:
2535-0897
Sponsoring Org:
National Science Foundation
More Like this
  1. As we look to the future of natural history collections and a global integration of biodiversity data, we are reliant on a diverse workforce with the skills necessary to build, grow, and support the data, tools, and resources of the Digital Extended Specimen (DES; Webster 2019, Lendemer et al. 2020, Hardisty 2020). Future “DES Data Curators” – those who will be charged with maintaining resources created through the DES – will require skills and resources beyond what is currently available to most natural history collections staff. In training the workforce to support the DES we have an opportunity to broaden our community and ensure that, through the expansion of biodiversity data, the workforce landscape itself is diverse, equitable, inclusive, and accessible. A fully-implemented DES will provide training that encapsulates capacity building, skills development, unifying protocols and best practices guidance, and cutting-edge technology that also creates inclusive, equitable, and accessible systems, workflows, and communities. As members of the biodiversity community and the current workforce, we can leverage our knowledge and skills to develop innovative training models that: include a range of educational settings and modalities; address the needs of new communities not currently engaged with digital data; from their onset, providemore »attribution for past and future work and do not perpetuate the legacy of colonial practices and historic inequalities found in many physical natural history collections. Recent reports from the Biodiversity Collections Network (BCoN 2019) and the National Academies of Science, Engineering and Medicine (National Academies of Sciences, Engineering, and Medicine 2020) specifically address workforce needs in support of the DES. To address workforce training and inclusivity within the context of global data integration, the Alliance for Biodiversity Knowledge included a topic on Workforce capacity development and inclusivity in Phase 2 of the consultation on Converging Digital Specimens and Extended Specimens - Towards a global specification for data integration. Across these efforts, several common themes have emerged relative to workforce training and the DES. A call for a community needs assessment: As a community, we have several unknowns related to the current collections workforce and training needs. We would benefit from a baseline assessment of collections professionals to define current job responsibilities, demographics, education and training, incentives, compensation, and benefits. This includes an evaluation of current employment prospects and opportunities. Defined skills and training for the 21st century collections professional: We need to be proactive and define the 21st century workforce skills necessary to support the development and implementation of the DES. When we define the skills and content needs we can create appropriate training opportunities that include scalable materials for capacity building, educational materials that develop relevant skills, unifying protocols across the DES network, and best practices guidance for professionals. Training for data end-users: We need to train data end-users in biodiversity and data science at all levels of formal and informal education from primary and secondary education through the existing workforce. This includes developing training and educational materials, creating data portals, and building analyses that are inclusive, accessible, and engage the appropriate community of science educators, data scientists, and biodiversity researchers. Foster a diverse, equitable, inclusive, and accessible and professional workforce: As the DES develops and new tools and resources emerge, we need to be intentional in our commitment to building tools that are accessible and in assuring that access is equitable. This includes establishing best practices to ensure the community providing and accessing data is inclusive and representative of the diverse global community of potential data providers and users. Upfront, we must acknowledge and address issues of historic inequalities and colonial practices and provide appropriate attribution for past and future work while ensuring legal and regulatory compliance. Efforts must include creating transparent linkages among data and the humans that create the data that drives the DES. In this presentation, we will highlight recommendations for building workforce capacity within the DES that are diverse, inclusive, equitable and accessible, take into account the requirements of the biodiversity science community, and that are flexible to meet the needs of an evolving field.« less
  2. It takes great effort to manually or semi-automatically convert free-text phenotype narratives (e.g., morphological descriptions in taxonomic works) to a computable format before they can be used in large-scale analyses. We argue that neither a manual curation approach nor an information extraction approach based on machine learning is a sustainable solution to produce computable phenotypic data that are FAIR (Findable, Accessible, Interoperable, Reusable) (Wilkinson et al. 2016). This is because these approaches do not scale to all biodiversity, and they do not stop the publication of free-text phenotypes that would need post-publication curation. In addition, both manual and machine learning approaches face great challenges: the problem of inter-curator variation (curators interpret/convert a phenotype differently from each other) in manual curation, and keywords to ontology concept translation in automated information extraction, make it difficult for either approach to produce data that are truly FAIR. Our empirical studies show that inter-curator variation in translating phenotype characters to Entity-Quality statements (Mabee et al. 2007) is as high as 40% even within a single project. With this level of variation, curated data integrated from multiple curation projects may still not be FAIR. The key causes of this variation have been identified as semantic vaguenessmore »in original phenotype descriptions and difficulties in using standardized vocabularies (ontologies). We argue that the authors describing characters are the key to the solution. Given the right tools and appropriate attribution, the authors should be in charge of developing a project's semantics and ontology. This will speed up ontology development and improve the semantic clarity of the descriptions from the moment of publication. In this presentation, we will introduce the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists, which consists of three components: a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. Fig. 1 shows the system diagram of the platform. The presentation will consist of: a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. The software modules currently incorporated in Character Recorder and Conflict Resolver have undergone formal usability studies. We are actively recruiting Carex experts to participate in a 3-day usability study of the entire system of the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists. Participants will use the platform to record 100 characters about one Carex species. In addition to usability data, we will collect the terms that participants submit to the underlying ontology and the data related to conflict resolution. Such data allow us to examine the types and the quantities of logical conflicts that may result from the terms added by the users and to use Discrete Event Simulation models to understand if and how term additions and conflict resolutions converge. We look forward to a discussion on how the tools (Character Recorder is online at http://shark.sbs.arizona.edu/chrecorder/public) described in our presentation can contribute to producing and publishing FAIR data in taxonomic studies.« less
  3. A wealth of information about how parasites interact with their hosts already exists in collections, scientific publications, specialized databases, and grey literature. The US National Science Foundation-funded Terrestrial Parasite Tracker Thematic Collection Network (TPT) project began in 2019 to help build a comprehensive picture of arthropod ectoparasites including the evolution of these parasite-host biotic associations, distributions, and the ecological interactions of disease vectors. TPT is a network of biodiversity collections whose data can assist scientists, educators, land managers, and policymakers to better understand the complex relationship between hosts and parasites including emergent properties that may explain the causes and frequency of human and wildlife pathogens. TPT member collections make their association information easier to access via Global Biotic Interactions (GloBI, Poelen et al. 2014), which is periodically archived through Zenodo to track progress in the TPT project. TPT leverages GloBI's ability to index biotic associations from specimen occurrence records that come from existing management systems (e.g., Arctos, Symbiota, EMu, Excel, MS Access) to avoid having to completely rework existing, or build new, cyber-infrastructures before collections can share data. TPT-affiliated collection managers use collection-specific translation tables to connect their verbatim (or original) terms used to describe associations (e.g., "ex", "found on",more »"host") to their interpreted, machine-readable terms in the OBO Relations Ontology (RO). These interpreted terms enable searches across previously siloed association record sets, while the original verbatim values remain accessible to help retain provenance and allow for interpretation improvements. TPT is an ambitious project, with the goal to database label data from over 1.2 million specimens of arthropod parasites of vertebrates coming from 22 collections across North America. In the first year of the project, the TPT collections created over 73,700 new records and 41,984 images. In addition, 17 TPT data providers and three other collaborators shared datasets that are now indexed by GloBI, visible on the TPT GloBI project page. These datasets came from collection specimen occurrence records and literature sources. Two TPT data archives that capture and preserve the changes in the data coming from TPT to GloBI were published through Zenodo (Poelen et al. 2020a, Poelen et al. 2020b). The archives document the changes in how data are shared by collections including the biotic association data format and quantity of data captured. The Poelen et al. 2020b report included all TPT collections and biotic interactions from Arctos collections in VertNet and the Symbiota Collection of Arthropods Network (SCAN). The total number of interactions included in this report was 376,671 records (500,000 interactions is the overall goal for TPT). In addition, close coordination with TPT collection data managers including many one-on-one conversations, a workshop, and a webinar (Sullivan et al. 2020) was conducted to help guide the data capture of biotic associations. GloBI is an effective tool to help integrate biotic association data coming from occurrence records into an openly accessible, global, linked view of existing species interaction records. The results gleaned from the TPT workshop and Zenodo data archives demonstrate that minimizing changes to existing workflows allow for custom interpretation of collection-specific interaction terms. In addition, including collection data managers in the development of the interaction term vocabularies is an important part of the process that may improve data sharing and the overall downstream data quality.« less
  4. Over 300 million arthropod specimens are housed in North American natural history collections. These collections represent a “vast hidden treasure trove” of biodiversity −95% of the specimen label data have yet to be transcribed for research, and less than 2% of the specimens have been imaged. Specimen labels contain crucial information to determine species distributions over time and are essential for understanding patterns of ecology and evolution, which will help assess the growing biodiversity crisis driven by global change impacts. Specimen images offer indispensable insight and data for analyses of traits, and ecological and phylogenetic patterns of biodiversity. Here, we review North American arthropod collections using two key metrics, specimen holdings and digitization efforts, to assess the potential for collections to provide needed biodiversity data. We include data from 223 arthropod collections in North America, with an emphasis on the United States. Our specific findings are as follows: (1) The majority of North American natural history collections (88%) and specimens (89%) are located in the United States. Canada has comparable holdings to the United States relative to its estimated biodiversity. Mexico has made the furthest progress in terms of digitization, but its specimen holdings should be increased to reflect themore »estimated higher Mexican arthropod diversity. The proportion of North American collections that has been digitized, and the number of digital records available per species, are both much lower for arthropods when compared to chordates and plants. (2) The National Science Foundation’s decade-long ADBC program (Advancing Digitization of Biological Collections) has been transformational in promoting arthropod digitization. However, even if this program became permanent, at current rates, by the year 2050 only 38% of the existing arthropod specimens would be digitized, and less than 1% would have associated digital images. (3) The number of specimens in collections has increased by approximately 1% per year over the past 30 years. We propose that this rate of increase is insufficient to provide enough data to address biodiversity research needs, and that arthropod collections should aim to triple their rate of new specimen acquisition. (4) The collections we surveyed in the United States vary broadly in a number of indicators. Collectively, there is depth and breadth, with smaller collections providing regional depth and larger collections providing greater global coverage. (5) Increased coordination across museums is needed for digitization efforts to target taxa for research and conservation goals and address long-term data needs. Two key recommendations emerge: collections should significantly increase both their specimen holdings and their digitization efforts to empower continental and global biodiversity data pipelines, and stimulate downstream research.« less
  5. A quiet revolution is afoot in the field of law. Technical systems employing algorithms are shaping and displacing professional decision making, and they are disrupting and restructuring relationships between law firms, lawyers, and clients. Decision-support systems marketed to legal professionals to support e-discovery—generally referred to as “technology assisted review” (TAR)—increasingly rely on “predictive coding”: machine-learning techniques to classify and predict which of the voluminous electronic documents subject to litigation should be withheld or produced to the opposing side. These systems and the companies offering them are reshaping relationships between lawyers and clients, introducing new kinds of professionals into legal practice, altering the discovery process, and shaping how lawyers construct knowledge about their cases and professional obligations. In the midst of these shifting relationships—and the ways in which these systems are shaping the construction and presentation of knowledge—lawyers are grappling with their professional obligations, ethical duties, and what it means for the future of legal practice. Through in-depth, semi-structured interviews of experts in the e-discovery technology space—the technology company representatives who develop and sell such systems to law firms and the legal professionals who decide whether and how to use them in practice—we shed light on the organizational structures, professional rulesmore »and norms, and technical system properties that are shaping and being reshaped by predictive coding systems. Our findings show that AI-supported decision systems such as these are reconfiguring professional work practices. In particular, they highlight concerns about potential loss of professional agency and skill, limited understanding and thereby both over- and under reliance on decision-support systems, and confusion about responsibility and accountability as new kinds of technical professionals and technologies are brought into legal practice. The introduction of predictive coding systems and the new professional and organizational arrangements they are ushering into legal practice compound general concerns over the opacity of technical systems with specific concerns about encroachments on the construction of expert knowledge, liability frameworks, and the potential (mis)alignment of machine reasoning with professional logic and ethics. Based on our findings, we conclude that predictive coding tools—and likely other algorithmic systems lawyers use to construct knowledge and reason about legal practice— challenge the current model for evaluating whether and how tools are appropriate for legal practice. As tools become both more complex and more consequential, it is unreasonable to rely solely on legal professionals—judges, law firms, and lawyers—to determine which technologies are appropriate for use. The legal professionals we interviewed report relying on the evaluation and judgment of a range of new technical experts within law firms and, increasingly, third-party vendors and their technical experts. This system for choosing technical systems upon which lawyers rely to make professional decisions—e.g., whether documents are responsive, or whether the standard of proportionality has been met—is no longer sufficient. As the tools of medicine are reviewed by appropriate experts before they are put out for consideration and adoption by medical professionals, we argue that the legal profession must develop new processes for determining which algorithmic tools are fit to support lawyers’ decision making. Relatedly, because predictive coding systems are used to produce lawyers’ professional judgment, we argue they must be designed for contestability— providing greater transparency, interaction, and configurability around embedded choices to ensure decisions about how to embed core professional judgments, such as relevance and proportionality, remain salient and demand engagement from lawyers, not just their technical experts.« less