skip to main content


Title: Hawaiian Regional Climate Variability during Two Types of El Niño
Abstract The large-scale atmospheric circulation of the North Pacific associated with two types of El Niño—the eastern Pacific (EP) and central Pacific (CP)—is studied in relation to Hawaiian winter (December–February) rainfall and temperature. The eastern and central equatorial Pacific undergo active convective heating during EP El Niño winters. The local Hadley circulation is enhanced and an upper-level westerly jet stream of the North Pacific is elongated eastward. Due to the impact of both phenomena, stronger anomalous descending motion, moisture flux divergence anomalies near Hawaii, and reduction of easterly trade winds, which are characteristic of EP winters, are unfavorable for winter rainfall in Hawaii. As a result of this robust signal, dry conditions prevail in Hawaii and the standard deviation of rainfall during EP winters is smaller than the climatology. For CP winters, the maximum equatorial ocean warming is weaker and shifted westward to near the date line. The subtropical jet stream retreats westward relative to EP winters and the anomalously sinking motion near Hawaii is variable and generally weaker. Although the anomalous moisture flux divergence still exists over the subtropical North Pacific, its magnitude is weaker relative to EP winters. Without strong external forcing, rainfall in the Hawaiian Islands during CP winters is close to the long-term mean. The spread of rainfall from one CP event to another is also larger. The near-surface minimum temperature from three stations in Hawaii reveals cooling during EP winters and slight warming during CP winters.  more » « less
Award ID(s):
1902970
NSF-PAR ID:
10355426
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
22
ISSN:
0894-8755
Page Range / eLocation ID:
9929 to 9943
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Through the diagnosis of 29 Atmospheric Model Inter-comparison Project (AMIP) experiments from the CMIP5 inter-comparison project, we investigate the impact of the mean state on simulated western North Pacific anomalous anticyclone (WNPAC) during El Niño decaying summer. The result indicates that the inter-model difference of the JJA mean precipitation in the Indo-western Pacific warm pool is responsible for the difference of the WNPAC. During the decaying summer of an Eastern Pacific (EP) type El Niño, a model that simulates excessive mean rainfall over the western North Pacific (WNP) reproduces a stronger WNPAC response, through an enhanced local convection-circulation-moisture feedback. The intensity of the simulated WNPAC during the decay summer of a Central Pacific (CP) type El Niño, on the other hand, depends on the mean precipitation over the tropical Indian Ocean. The distinctive WNPAC-mean precipitation relationships between the EP and CP El Niño result from different anomalous SST patterns in the WNP. While the local SST anomaly plays an active role in maintaining the WNPAC during the EP El Niño, it plays a passive role during the CP El Niño. As a result, only the mean-state precipitation/moisture field in the tropical Indian Ocean modulates the circulation anomaly in the WNP in the latter case. 
    more » « less
  2. Abstract

    The longitudinal location of precipitation anomalies over the equatorial Pacific shows a distinctive feature with the westernmost location for La Niña, the easternmost location for eastern Pacific (EP) El Niño, and somewhere between for central Pacific (CP) El Niño, even though the center of the sea surface temperature anomaly (SSTA) for La Niña is located slightly east of that of CP El Niño. The mechanisms for such a precipitation diversity were investigated through idealized model simulations and moisture and moist static energy budget analyses. It is revealed that the boundary layer convergence anomalies associated with the precipitation diversity are mainly induced by underlying SSTA through the Lindzen–Nigam mechanism, that is, their longitudinal locations are mainly controlled by the meridional and zonal distributions of the ENSO SSTA. The westward shift of the precipitation anomaly center during La Niña relative to that during CP El Niño is primarily caused by the combined effects of nonlinear zonal moist enthalpy advection anomalies and the Lindzen–Nigam mechanism mentioned above. Such a zonal diversity is further enhanced by the “convection–cloud–longwave radiation” feedback, the SST-induced latent heat flux anomalies, and the advection of mean moist enthalpy by anomalous winds. This diversity in the longitudinal location of precipitation anomalies has contributions to the diversities in the longitudinal locations of anomalous Walker circulation and western North Pacific anomalous anticyclone/cyclone among the three types of ENSO.

     
    more » « less
  3. null (Ed.)
    Abstract Using observational data and model hindcasts produced by a coupled climate model, we examine the response of the East Asian winter monsoon (EAWM) to three types of El Niño: eastern Pacific (EP) and central Pacific I (CP-I) and II (CP-II) El Niños. The observational analysis shows that all three El Niño types weaken the EAWM with varying degrees of impact. The EP El Niño has the largest weakening effect, while the CP-II El Niño has the second largest, and the CP-I El Niño has the smallest. We find that diverse El Niño types impact the EAWM by altering the responses of two anomalous anticyclones during El Niño mature winter: the western North Pacific anticyclone (WNPAC) and Kuroshio anticyclone (KAC). The WNPAC responses are controlled by the Gill response and Indian Ocean warming processes that both respond to the eastern-to-central tropical Pacific precipitation anomalies. The KAC responses are controlled by a poleward wave propagation responding to the northwestern tropical Pacific precipitation anomalies. We find that the model hindcasts significantly underestimate the weakening effect during the EP and CP-II El Niños. These underestimations are related to a model deficiency in which it produces a too-weak WNPAC response during the EP El Niño and completely misses the KAC response during both types of El Niño. The too-weak WNPAC response is caused by the model deficiency of simulating too-weak eastern-to-central tropical Pacific precipitation anomalies. The lack of KAC response arises from the unrealistic response of the model’s extratropical atmosphere to the northwestern tropical Pacific precipitation anomalies. 
    more » « less
  4. The modulation of the Madden–Julian Oscillation (MJO) intensity by eastern Pacific (EP) type and central Pacific (CP) type of El Niño was investigated using observed data during the period of 1979–2013. MJO intensity is weakened (strengthened) over the equatorial western Pacific from November to April during EP (CP) El Niño. The difference arises from distinctive tendencies of column-integrated moist static energy (MSE) anomaly in the region. A larger positive MSE tendency was found during the convection developing period in the CP MJO than the EP MJO. The tendency difference is mainly caused by three meridional moisture advection processes: the advection of the background moisture by the intraseasonal wind anomaly, the advection of intraseasonal moisture anomaly by the mean wind and the nonlinear eddy advection. The advections’ differences are primarily caused by different intraseasonal perturbations and high-frequency activity whereas the background flow and moisture gradient are similar. The amplitudes in the intraseasonal suppressed convection anomaly over the central Pacific is critical in modulating the three meridional moisture advection processes. The influences on the central Pacific convection anomaly from seasonal mean moisture in two types of El Niños are discussed. 
    more » « less
  5. Abstract The relationship of upper tropospheric jet variability to El Niño / Southern Oscillation (ENSO) in reanalysis datasets is analyzed for 1979–2018, revealing robust regional and seasonal variability. Tropical jets associated with monsoons and the Walker circulation are weaker and the zonal mean subtropical jet shifts equatorward in both hemispheres during El Niño, consistent with previous findings. Regional and seasonal variations are analyzed separately for subtropical and polar jets. The subtropical jet shifts poleward during El Niño over the NH eastern Pacific in DJF, and in some SH regions in MAMand SON. Subtropical jet altitudes increase during El Niño, with significant changes in the zonal mean in the NH and during summer/fall in the SH. Though zonal mean polar jet correlations with ENSO are rarely significant, robust regional/seasonal changes occur: The SH polar jet shifts equatorward during El Niño over Asia and the western Pacific in DJF, and poleward over the eastern Pacific in JJA and SON. Polar jets are weaker (stronger) during El Niño in the western (eastern) hemisphere, especially in the SH; conversely, subtropical jets are stronger (weaker) in the western (eastern) hemisphere during El Niño in winter and spring; these opposing changes, along with an anticorrelation between subtropical and polar jet windspeed, reinforce subtropical/polar jet strength differences during El Niño, and suggest ENSO-related covariability of the jets. ENSO-related jet latitude, altitude, and windspeed changes can reach 4(3)°, 0.6(0.3) km, and 6(3) ms −1 , respectively, for the subtropical (polar) jets. 
    more » « less