The rapid growth of illicit supply chains during and after the Covid-19 pandemic reveals a need for effectively combating and preventing the cross-border movement of contraband, including but not limited to counterfeit goods. A proactive approach by companies along with public stakeholders, such as government agencies and individual consumers, toward disrupting illicit supply chains operating across borders is especially important during moments of global crisis when consumers are more susceptible to unknowingly purchasing substandard counterfeit products such as respirators. While marketplaces, platforms, and other legitimate businesses have worked to prevent movement of counterfeits and illicit goods through their services, the high adaptability and sophistication of counterfeiters requires more preventative and multistakeholder approaches. This article outlines a multidisciplinary and multilayered approach to detecting and disrupting illicit supply chains of counterfeit personal protective equipment (PPE) with a focus on respirators. It utilizes research conducted for a National Science Foundation (NSF) grant on Covid-19 related crime, including the advertising and sale of counterfeit respirators. One layer examines online content as seen by the end user and the activity of vendors or sellers used to advertise and sell counterfeit products. The research is also informed by data on the information, financial, and physical flows of counterfeit respirators obtained through a public-private partnership with George Mason University’s Terrorism, Transnational Crime and Corruption Center (TraCCC-GMU) and 3M, one of the largest manufacturers of respirators in the world. The article examines an important and relatively recent trend - how emerging technological shifts in the marketplace are affecting global security. Research from the TraCCC-GMU and 3M partnership, including a data sharing agreement, revealed that counterfeiters constantly change their modus operandi to continue selling illicit goods with impunity, facilitating illicit activity with the use and abuse of legitimate companies such as ecommerce marketplaces and social media. The article presents an overview of the current state of counterfeit supply chains and provides concrete policy recommendations on how legitimate companies can move beyond just removing listings but must also actively prevent these transnational crimes through innovative multidisciplinary approaches, advanced data analytics, and public awareness campaigns. The research also seeks to connect the dots to broader policy implications in terms of the legitimate economy and environmental sustainability.
more »
« less
Demystifying Local Business Search Poisoning for Illicit Drug Promotion
A new type of underground illicit drug promotion, illicit drug business listings on local search services (e.g., local knowledge panel, map search, voice search), is increasingly being utilized by miscreants to advertise and sell controlled substances on the Internet. Miscreants exploit the problematic upstream local data brokers featuring loose control on data quality to post listings that promote illicit drug business. Such a promotion, in turn, pollutes the major downstream search providers’ knowledge bases and further reaches a large audience through web, map, and voice searches. To the best of our knowledge, little has been done so far to understand this new illicit promotion in terms of its scope, impact, and techniques, not to mention any effort to identify such illicit drug business listings on a large scale. In this paper, we report the first measurement study of the illicit drug business listings on local search services. Our findings have brought to light the vulnerable and less regulated local business listing ecosystem and the pervasiveness of such illicit activities, as well as the impact on local search audience.
more »
« less
- PAR ID:
- 10355440
- Date Published:
- Journal Name:
- Proceeding of ISOC Network and Distributed System Security Symposium (NDSS), 2021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This is a story about the challenges and opportunities that surfaced while answering a deceptively complex question - where's the data? As faculty and researchers publish articles, datasets, and other research outputs to meet promotion and tenure requirements, address federal funding policies, and institutional open access and data sharing policies, many online locations for publishing these materials have developed over time. How can we capture where all of the research generated on an academic campus is shared and preserved? This presentation will discuss how our multi-institution collaboration, the Reality of Academic Data Sharing (RADS) Initiative, sought to answer this question. We programmatically pulled DOIs from DataCite and CrossRef, making the naive assumption that these platforms, the two predominant DOI registration agencies for US data, would present us with a neutral and unbiased view of where data from our affiliated researchers were shared. However, as we dug into the data, we found inconsistencies in the use and completeness of the necessary metadata fields for our questions, as well as differences in how DOIs were assigned across repositories. Additionally, we recognized the systematic and privileged bias introduced by our choice of data sources. Specifically, while DataCite and CrossRef provide easy discovery of research outputs because they aggregate DOIs, they are also costly commercial services. Many repositories that cannot afford such services or lack local staffing and knowledge required to use these services are left out of the technology that has recently been labeled “global research infrastructure”. Our presentation will identify the challenges we encountered in conducting this research specifically around finding the data, and cleaning and interpreting the data. We will further engage the audience in a discussion around increasing representation in the global research infrastructure to discover and account for more research outputs.more » « less
-
Illicit drug trafficking via social media sites such as Instagram have become a severe problem, thus drawing a great deal of attention from law enforcement and public health agencies. How to identify illicit drug dealers from social media data has remained a technical challenge for the following reasons. On the one hand, the available data are limited because of privacy concerns with crawling social media sites; on the other hand, the diversity of drug dealing patterns makes it difficult to reliably distinguish drug dealers from common drug users. Unlike existing methods that focus on posting-based detection, we propose to tackle the problem of illicit drug dealer identification by constructing a large-scale multimodal dataset named Identifying Drug Dealers on Instagram (IDDIG). Nearly 4,000 user accounts, of which more than 1,400 are drug dealers, have been collected from Instagram with multiple data sources including post comments, post images, homepage bio, and homepage images. We then design a quadruple-based multimodal fusion method to combine the multiple data sources associated with each user account for drug dealer identification. Experimental results on the constructed IDDIG dataset demonstrate the effectiveness of the proposed method in identifying drug dealers (almost 95% accuracy). Moreover, we have developed a hashtag-based community detection technique for discovering evolving patterns, especially those related to geography and drug types.more » « less
-
Detection of illicit drug residues from wastewater provides a new route toward community-level assessment of drug abuse that is critical to public health. However, traditional chemistry analytical tools such as high-performance liquid chromatography in tandem with mass spectrometry (HPLC-MS) cannot meet the large-scale testing requirement in terms of cost, promptness, and convenience of use. In this article, we demonstrated ultra-sensitive and portable surface-enhanced Raman scattering sensing (SERS) of fentanyl, a synthetic opioid, from sewage water and achieved quantitative analysis through principal component analysis and partial least-squares regression. The SERS substrates adopted in this application were synthesized by in situ growth of silver nanoparticles on diatomaceous earth films, which show ultra-high sensitivity down to 10 parts per trillion in artificially contaminated tap water in the lab using a commercial portable Raman spectrometer. Based on training data from artificially contaminated tap water, we predicted the fentanyl concentration in the sewage water from a wastewater treatment plant to be 0.8 parts per billion (ppb). As a comparison, the HPLC-MS confirmed the fentanyl concentration was below 1 ppb but failed to provide a specific value of the concentration since the concentration was too low. In addition, we further proved the validity of our SERS sensing technique by comparing SERS results from multiple sewage water treatment plants, and the results are consistent with the public health data from our local health authority. Such SERS sensing technique with ultra-high sensitivity down to sub-ppb level proved its feasibility for point-of-care detection of illicit drugs from sewage water, which is crucial to assess public health.more » « less
-
Recent years have witnessed the rapid progress in deep learning (DL), which also brings their potential weaknesses to the spotlights of security and machine learning studies. With important discoveries made by adversarial learning research, surprisingly little attention, however, has been paid to the realworld adversarial techniques deployed by the cybercriminal to evade image-based detection. Unlike the adversarial examples that induce misclassification using nearly imperceivable perturbation, real-world adversarial images tend to be less optimal yet equally eective. As a first step to understand the threat, we report in the paper a study on adversarial promotional porn images (APPIs) that are extensively used in underground advertising. We show that the adversary today’s strategically constructs the APPIs to evade explicit content detection while still preserving their sexual appeal, even though the distortions and noise introduced are clearly observable to humans. To understand such real-world adversarial images and the underground business behind them, we develop a novel DL-based methodology called Mal`ena, which focuses on the regions of an image where sexual content is least obfuscated and therefore visible to the target audience of a promotion. Using this technique, we have discovered over 4,000 APPIs from 4,042,690 images crawled from popular social media, and further brought to light the unique techniques they use to evade popular explicit content detectors (e.g., Google Cloud Vision API, Yahoo Open NSFW model), and the reason that these techniques work. Also studied are the ecosystem of such illicit promotions, including the obfuscated contacts advertised through those images, compromised accounts used to disseminate them, and large APPI campaigns involving thousands of images. Another interesting finding is the apparent attempt made by cybercriminals to steal others’ images for their advertising. The study highlights the importance of the research on real-world adversarial learning and makes the first step towards mitigating the threats it poses.more » « less
An official website of the United States government

