skip to main content


Title: Bias on the Force Concept Inventory across the intersection of gender and race
Education researchers often compare performance across race and gender on research-based assessments of physics knowledge to investigate the impacts of racism and sexism on physics student learning. These investigations' claims rely on research-based assessments providing reliable, unbiased measures of student knowledge across social identity groups. We used classical test theory and differential item functioning (DIF) analysis to examine whether the items on the Force Concept Inventory (FCI) provided unbiased data across social identifiers for race, gender, and their intersections. The data was accessed through the Learning About STEM Student Outcomes platform and included responses from 4,848 students posttests in 152 calculus-based introductory physics courses from 16 institutions. The results indicated that the majority of items (22) on the FCI were biased towards a group. These results point to the need for instrument validation to account for item bias and the identification or development of fair research-based assessments.  more » « less
Award ID(s):
1928596
NSF-PAR ID:
10355682
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 Physics Education Research Conference Proceedings
Page Range / eLocation ID:
69 to 74
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigated the intersectional nature of race/racism and gender/sexism in broad scale inequities in physics student learning using a critical quantitative intersectionality. To provide transparency and create a nuanced picture of learning, we problematized the measurement of equity by using two competing operationalizations of equity:Equity of IndividualityandEquality of Learning. These two models led to conflicting conclusions. The analyses used hierarchical linear models to examine student's conceptual learning as measured by gains in scores on research‐based assessments administered as pretests and posttests. The data came from the Learning About STEM Student Outcomes' (LASSO) national database and included data from 13,857 students in 187 first‐semester college physics courses. Findings showed differences in student gains across gender and race. Large gender differences existed for White and Hispanic students but not for Asian, Black, and Pacific Islander students. The models predicted larger gains for students in collaborative learning than in lecture‐based courses. The Equity of Individuality operationalization indicated that collaborative instruction improved equity because all groups learned more with collaborative learning. The Equality of Learning operationalization indicated that collaborative instruction did not improve equity because differences between groups were unaffected. We discuss the implications of these mixed findings and identify areas for future research using critical quantitative perspectives in education research.

     
    more » « less
  2. Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affect E/CS student awareness of, interest in, and participation in HIP? During Project Year 1, a survey driven quantitative study was conducted. A survey informed by results of the National Survey of Student Engagement (NSSE) from each institution was developed and deployed. Survey respondents (N = 531) were students enrolled in undergraduate E/CS programs at either institution. Frequency distribution analyses were conducted to assess the respondents’ level of participation in extracurricular HIPs (i.e., global learning and study aboard, internships, learning communities, service and community-based learning, and undergraduate research) that have been shown in the literature to positively impact undergraduate student success. Further statistical analysis was conducted to understand the effects of HIP participation, coursework enjoyability, and confidence at completing a degree on the academic success of underrepresented and nontraditional E/CS students. Exploratory factor analysis was used to derive an "academic success" variable from five items that sought to measure how students persevere to attain academic goals. Results showed that a linear relationship in the target population exists and that the resultant multiple regression model is a good fit for the data. During the Project Year 2, survey results were used to develop focus group interview protocols and guide the purposive selection of focus group participants. Focus group interviews were conducted with a total of 27 undergraduates (12 males, 15 females, 16 engineering students, 11 computer science students) across both institutions via video conferencing (i.e., ZOOM) during the spring and fall 2021 semesters. Currently, verified focus group transcripts are being systematically analyzed and coded by a team of four trained coders to identify themes and answer the research questions. This paper will provide an overview of the preliminary themes so far identified. Future project activities during Project Year 3 will focus on refining themes identified during the focus group transcript analysis. Survey and focus group data will then be combined to develop deeper understandings of why and how E/CS students participate in the HIP at their university, taking into account the institutional and programmatic contexts at each institution. Ultimately, the project will develop and disseminate recommendations for improving diverse E/CS student awareness of, interest in, and participation in HIP, at similar land grant institutions nationally. 
    more » « less
  3. This study investigates differences in student participation rates between in-class and online administrations of research-based assessments. A sample of 1,310 students from 25 sections of 3 different introductory physics courses over two semesters were instructed to complete the CLASS attitudinal survey and the concept inventory relevant to their course, either the FCI or the CSEM. Each student was randomly assigned to take one of the surveys in class and the other survey online at home using the Learning About STEM Student Outcomes (LASSO) platform. Results indicate large variations in participation rates across both test conditions (online and in class). A hierarchical generalized linear model (HGLM) of the student data utilizing logistic regression indicates that student grades in the course and faculty assessment administration practices were both significant predictors of student participation. When the recommended online assessments administration practices were implemented, participation rates were similar across test conditions. Implications for student and course assessment methodologies will be discussed. 
    more » « less
  4. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  5. When measuring academic skills among students whose primary language is not English, standardized assessments are often provided in languages other than English. The degree to which alternate-language test translations yield unbiased, equitable assessment must be evaluated; however, traditional methods of investigating measurement equivalence are susceptible to confounding group differences. The primary purposes of this study were to investigate differential item functioning (DIF) and item bias across Spanish and English forms of an assessment of early mathematics skills. Secondary purposes were to investigate the presence of selection bias and demonstrate a novel approach for investigating DIF that uses a regression discontinuity design framework to control for selection bias. Data were drawn from 1,750 Spanish-speaking Kindergarteners participating in the Early Childhood Longitudinal Study, Kindergarten Class of 1998–1999, who were administered either the Spanish or English version of the mathematics assessment based on their performance on an English language screening measure. Evidence of selection bias—differences between groups in SES, age, approaches to learning, self-control, social interaction, country of birth, childcare, household composition and number in the home, books in the home, and parent involvement—highlighted limitations of a traditional approach for investigating DIF that only controlled for ability. When controlling for selection bias, only 11% of items displayed DIF, and subsequent examination of item content did not suggest item bias. Results provide evidence that the Spanish translation of the ECLS-K mathematics assessment is an equitable and unbiased assessment accommodation for young dual language learners. 
    more » « less