skip to main content


Title: Reproductive benefits associated with dispersal in headwater populations of Trinidadian guppies ( Poecilia reticulata )
Abstract

Theory suggests that the evolution of dispersal is balanced by its fitness costs and benefits, yet empirical evidence is sparse due to the difficulties of measuring dispersal and fitness in natural populations. Here, we use spatially explicit data from a multi‐generational capture–mark–recapture study of two populations of Trinidadian guppies (Poecilia reticulata) along with pedigrees to test whether there are fitness benefits correlated with dispersal. Combining these ecological and molecular data sets allows us to directly measure the relationship between movement and reproduction. Individual dispersal was measured as the total distance moved by a fish during its lifetime. We analysed the effects of dispersal propensity and distance on a variety of reproductive metrics. We found that number of mates and number of offspring were positively correlated to dispersal, especially for males. Our results also reveal individual and environmental variation in dispersal, with sex, size, season, and stream acting as determining factors.

 
more » « less
Award ID(s):
2016569
NSF-PAR ID:
10445878
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
25
Issue:
2
ISSN:
1461-023X
Page Range / eLocation ID:
p. 344-354
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims

    Sphagnum (peatmoss) comprises a moss (Bryophyta) clade with ~300–500 species. The genus has unparalleled ecological importance because Sphagnum-dominated peatlands store almost a third of the terrestrial carbon pool and peatmosses engineer the formation and microtopography of peatlands. Genomic resources for Sphagnum are being actively expanded, but many aspects of their biology are still poorly known. Among these are the degree to which Sphagnum species reproduce asexually, and the relative frequencies of male and female gametophytes in these haploid-dominant plants. We assess clonality and gametophyte sex ratios and test hypotheses about the local-scale distribution of clones and sexes in four North American species of the S. magellanicum complex. These four species are difficult to distinguish morphologically and are very closely related. We also assess microbial communities associated with Sphagnum host plant clones and sexes at two sites.

    Methods

    Four hundred and five samples of the four species, representing 57 populations, were subjected to restriction site-associated DNA sequencing (RADseq). Analyses of population structure and clonality based on the molecular data utilized both phylogenetic and phenetic approaches. Multi-locus genotypes (genets) were identified using the RADseq data. Sexes of sampled ramets were determined using a molecular approach that utilized coverage of loci on the sex chromosomes after the method was validated using a sample of plants that expressed sex phenotypically. Sex ratios were estimated for each species, and populations within species. Difference in fitness between genets was estimated as the numbers of ramets each genet comprised. Degrees of clonality [numbers of genets/numbers of ramets (samples)] within species, among sites, and between gametophyte sexes were estimated. Sex ratios were estimated for each species, and populations within species. Sphagnum-associated microbial communities were assessed at two sites in relation to Sphagnum clonality and sex.

    Key Results

    All four species appear to engage in a mixture of sexual and asexual (clonal) reproduction. A single ramet represents most genets but two to eight ramets were dsumbers ansd text etected for some genets. Only one genet is represented by ramets in multiple populations; all other genets are restricted to a single population. Within populations ramets of individual genets are spatially clustered, suggesting limited dispersal even within peatlands. Sex ratios are male-biased in S. diabolicum but female-biased in the other three species, although significantly so only in S. divinum. Neither species nor males/females differ in levels of clonal propagation. At St Regis Lake (NY) and Franklin Bog (VT), microbial community composition is strongly differentiated between the sites, but differences between species, genets and sexes were not detected. Within S. divinum, however, female gametophytes harboured two to three times the number of microbial taxa as males.

    Conclusions

    These four Sphagnum species all exhibit similar reproductive patterns that result from a mixture of sexual and asexual reproduction. The spatial patterns of clonally replicated ramets of genets suggest that these species fall between the so-called phalanx patterns, where genets abut one another but do not extensively mix because of limited ramet fragmentation, and the guerrilla patterns, where extensive genet fragmentation and dispersal result in greater mixing of different genets. Although sex ratios in bryophytes are most often female-biased, both male and female biases occur in this complex of closely related species. The association of far greater microbial diversity for female gametophytes in S. divinum, which has a female-biased sex ratio, suggests additional research to determine if levels of microbial diversity are consistently correlated with differing patterns of sex ratio biases.

     
    more » « less
  2. Abstract

    Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal‐limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold‐water species at‐risk. We present a study of rainbow darters (Etheostoma caeruleum) in which we evaluated the importance of genetic variation on adaptive potential and determined responses to extreme thermal stress. We compared fine‐scale patterns of morphological and thermal tolerance differentiation across eight sites, including a unique lake habitat. We also inferred contemporary population structure using genomic data and characterized the relationship between individual genetic diversity and stress tolerance. We found site‐specific variation in thermal tolerance that generally matched local conditions and morphological differences associated with lake‐stream divergence. We detected patterns of population structure on a highly local spatial scale that could not be explained by isolation by distance or stream connectivity. Finally, we showed that individual thermal tolerance was positively correlated with genetic variation, suggesting that sites with increased genetic diversity may be better at tolerating novel stress. Our results highlight the importance of considering intraspecific variation in understanding population vulnerability and stress response.

     
    more » « less
  3. Abstract

    Movement has been studied extensively in stream salmonids, and most data suggest that population‐level behaviour is best described by a leptokurtic distribution. This distribution emphasises the large proportion of sedentary individuals in a population, which can implicitly lead to assumptions of low population connectivity and overlook the ecological significance of rare individuals with more mobile phenotypes.

    We report findings of a multi‐season radio telemetry study conducted on four adjacent populations of wild brook trout (Salvelinus fontinalis) connected by Loyalsock Creek in north‐central Pennsylvania. We used these data to investigate temporal and spatial patterns in movement and fitness trade‐offs associated with behavioural phenotype.

    Similar to previous studies, we found that 59 of the 120 radio‐tagged individuals (49%) were sedentary and moved less than 200 m. Only 18% of individuals dispersed more than 1 km, but the maximum distance moved exceeded 13 km. We also found that mobile individuals had significantly higher summer and autumn survival than did sedentary fish, which could indicate that there are fitness benefits associated with vagility.

    Most long‐distance movements were the result of fish migrating from small tributaries into a larger mainstem river in the days after spawning. Therefore, even though mobility was only expressed for a short duration and by relatively few individuals in the population, the behaviour appears to maintain metapopulation connectivity throughout the catchment.

    Our study highlights the ecological significance of rare phenotypes for population demography across large spatial scales and the need to understand movement across multiple temporal and spatial scales to ensure adequate conservation of critical forms of cryptic life history diversity.

     
    more » « less
  4. Abstract

    The importance of genetic drift in shaping patterns of adaptive genetic variation in nature is poorly known. Genetic drift should drive partially recessive deleterious mutations to high frequency, and inter‐population crosses may therefore exhibit heterosis (increased fitness relative to intra‐population crosses). Low genetic diversity and greater genetic distance between populations should increase the magnitude of heterosis. Moreover, drift and selection should remove strongly deleterious recessive alleles from individual populations, resulting in reduced inbreeding depression. To estimate heterosis, we crossed 90 independent line pairs ofArabidopsis thalianafrom 15 pairs of natural populations sampled across Fennoscandia and crossed an additional 41 line pairs from a subset of four of these populations to estimate inbreeding depression. We measured lifetime fitness of crosses relative to parents in a large outdoor common garden (8,448 plants in total) in central Sweden. To examine the effects of genetic diversity and genetic distance on heterosis, we genotyped parental lines for 869 SNPs. Overall, genetic variation within populations was low (median expected heterozygosity = 0.02), and genetic differentiation was high (medianFST = 0.82). Crosses between 10 of 15 population pairs exhibited significant heterosis, with magnitudes of heterosis as high as 117%. We found no significant inbreeding depression, suggesting that the observed heterosis is due to fixation of mildly deleterious alleles within populations. Widespread and substantial heterosis indicates an important role for drift in shaping genetic variation, but there was no significant relationship between fitness of crosses relative to parents and genetic diversity or genetic distance between populations.

     
    more » « less
  5. Abstract

    Dispersal evolves as an adaptive mechanism to optimize individual fitness across the landscape. Specifically, dispersal represents a mechanism to escape fitness costs resulting from changes in environmental conditions. Decades of empirical work suggest that individuals use local habitat cues to make movement decisions, but theory predicts that dispersal can also evolve as a fixed trait, independent of local conditions, in environments characterized by a history of stochastic spatiotemporal variation. Until now, however, both conditional and fixed models of dispersal evolution have primarily been evaluated using emigration data (stay vs. leave), and not dispersal distances: a more comprehensive measure of dispersal. Our goal was to test whether conditional or fixed models of dispersal evolution predict variation in dispersal distance in the stream salamanderGyrinophilus porphyriticus.We quantified variation in habitat conditions using measures of salamander performance from 4 yr of spatially explicit, capture–mark–recapture (CMR) data across three headwater streams in the Hubbard Brook Experimental Forest in central New Hampshire, USA. We used body condition as an index of local habitat quality that individuals may use to make dispersal decisions, and survival probability estimated from multistate CMR models as an index of mortality risk resulting from the long‐term history of environmental variation. We found that dispersal distances increased with declining survival probability, indicating that salamanders disperse further in risky environments. Dispersal distances were unrelated to spatial variation in body condition, suggesting that salamanders do not base dispersal distance decisions on local habitat quality. Our study provides the first empirical support for fixed models of dispersal evolution, which predict that dispersal evolves in response to a history of spatiotemporal environmental variation, rather than as a conditional response to current habitat conditions. More broadly, this study underscores the value of assessing alternative scales of environmental variation to gain a more complete and balanced understanding of dispersal evolution.

     
    more » « less