skip to main content


Title: The development of collegiate STEM self-efficacy: A longitudinal study of first-year students
This NSF S-STEM Grantee poster examines the longitudinal impact the Rice Emerging Scholars Program (RESP), Rice University’s comprehensive science, technology, engineering, and math (STEM) summer bridge program, has on student perceptions of STEM self-efficacy. STEM selfefficacy, or students’ belief in their ability to execute the actions necessary to perform within the STEM domain, can impact both goal setting (e.g., the desire to attain a STEM degree) and goal striving (e.g., the efforts taken towards earning a STEM degree).  more » « less
Award ID(s):
1565032
NSF-PAR ID:
10355843
Author(s) / Creator(s):
Date Published:
Journal Name:
Zone 1 Conference of the American Society for Engineering Education
ISSN:
2332-368X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  2. null (Ed.)
    This research paper describes a preliminary analysis of panel summaries of proposals submitted to the National Science Foundation’s (NSF’s) Scholarships for Science, Technology, Engineering and Mathematics (S-STEM) program. S-STEM provides awards to institutions to fund scholarships and to implement evidence-based strategies to recruit, retain, and graduate students from low-income backgrounds who have the academic potential to succeed in eligible STEM disciplines. The ultimate goal of the program is to build the US STEM workforce. In 2017, Rice University received funding from NSF to support teams of principal investigators and their co- investigators, who were experts in educational or related research areas, to attend a two-day workshop that was developed to help them prepare more competitive proposals to the S-STEM program. The emphasis was on investigators from predominantly undergraduate institutions, primarily those located in Established Program to Stimulate Competitive Research (EPSCoR) jurisdictions and/or designated as Minority-Serving Institutions. One of the workshop’s aims was to investigate factors that impact the success (or lack thereof) of proposals to the S-STEM program. We began with examining the feedback participants received from review panels on their proposal submissions. In this case study, we compare panel summaries for five S-STEM proposals submitted from five different institutions, exploring the similarities and differences in the overall reviews, as well as the strengths and weaknesses cited for both awarded and declined proposals that were awarded and declined in the context of their alignment with NSF’s merit review criteria. This is submitted for consideration as a traditional paper presentation. 
    more » « less
  3. STEM graduation rates, cumulative GPAs, and final GPA distributions of years 2016 to 2019 graduates were evaluated for students who participated in Rice University’s STEM intervention (the Rice Emerging Scholars Program, or RESP, which is partly funded through an NSF SSTEM grant), which begins with a pre-freshman STEM summer bridge program. RESP participants (n=89) and a comparison category of students (n=81) were identified as being underprepared for STEM coursework. Outcomes from the rest of the graduating classes were also assessed (i.e., non-comparison, non-RESP students). Incoming high school AP and IB credits were a moderate predictor of cumulative graduation GPA. After controlling for test credits, student status predicted cumulative graduation GPA, with higher GPAs in the noncomparison, non-RESP condition. Seventy-two RESP students graduated with a STEM major (81% STEM retention) compared with 62% of comparison students and 87% of non-comparison, non-RESP students. A chi-square test found a significant difference in favor of higher STEM retention among RESP students than the comparison students. Of RESP STEM graduates, 94% graduated with at least a B- GPA, compared with 86% of the comparison students, and 97% of the non-comparison, non-RESP students. A chi-square test approached significance in favor of more B- and above GPAs among RESP students than the comparison students. Overall, we found that high school preparation predicted STEM students’ graduation GPAs. Further, although RESP participation did not predict the cumulative GPAs of STEM majors, the program may: 1) improve STEM degree persistence and 2) ensure that more of the program’s STEM graduates achieve at least a B- cumulative graduation GPA. The number of RESP and comparison students is relatively small, yet these findings nevertheless offer preliminary evidence that the intervention may be effective at improving STEM outcomes for students who would otherwise struggle the most with their coursework. As more students graduate from the university, we will be able to make stronger conclusions about the effectiveness of RESP in improving outcomes of underprepared STEM students. 
    more » « less
  4. Skilled candidates with graduate training are in critical need in the wind energy industry. To prepare for employment in the industry requires both general training (e.g., an engineering degree, a business degree, etc.) and specialized training (e.g., wind energy resource assessment, wind turbine design, environmental impacts training, etc.). Consequently, it is challenging for one educational institution to provide the depth and breadth of course offerings and educational opportunities required. This challenge exists in many multidisciplinary and rapidly evolving fields. WindU is a collaborative National Science Foundation funded effort to respond to this need, by developing and testing a model to establish an expandable, multi-university, multi-disciplinary consortium in STEM graduate education. The consortium consists of multiple universities across the United States who have expertise in wind energy and share distance learning courses. The goal is to both broaden learning opportunities for current students, and to open up the pool of possible students interested in this field. Expanding educational opportunities by developing online delivery of wind energy graduate courses is one strategy to address much needed diversity in the field. Building upon the literature of previous successful consortium development, a new replicable model for setting up a consortium was created, called the Rapid model, with the name reflecting the goal to implement a new consortium within one year. Researchers conducted a study to determine the effectiveness of the model, through observing program meetings, interviewing faculty, staff and administrators engaged in the consortium development work, and examining course sharing outcomes. Researchers identified a number of aspects of the model most important for establishing the consortium, including the importance of external facilitation, committed faculty, staff and administrators, and useful tools and procedures. The research also identified some areas for model modification. This replicable model adds to the knowledge base concerning establishment of an expandable university consortium in graduate STEM education 
    more » « less
  5. To combat math underperformance among incoming STEM majors, Rice University designed a summer bridge program with National Science Foundation (NSF) S-STEM funding that included an intensive calculus course. Students invited to participate in the program were identified as being underprepared for STEM classes based on their standardized test scores, high school STEM coursework, and socioeconomic status. One of the program’s goals is to improve students’ preparation for the advanced math courses required for all STEM majors at Rice. The bridge program is designed to teach the material that has historically been most challenging for underprepared students, meaning the math content covered primarily second-semester calculus topics. We explored the impact of bridge program participation on math performance in first and second-semester math. First, we examined group differences in math preparation. Though program administrators attempt to create equivalent bridge and comparison groups, the bridge program is optional, meaning group assignment is not completely random. Bridge students were less prepared than comparison students on number of high school calculus AP (or equivalent) credits received. We analyzed group differences in final class grades from 2012-2017 among the comparison group, the bridge group, and the rest of the class (i.e. non-comparison and nonbridge), standardizing grades using Z-scores. Planned contrasts found that bridge students performed slightly better than, but not significantly different from, comparison students in first semester math. Conversely, planned contrasts found that the bridge group significantly outperformed the comparison group in second-semester math. These results suggest that bridge program exposure to calculus may improve performance relative to a comparison group, which is especially noteworthy because bridge students are the least math-prepared STEM students entering the university. Future research will analyze outcomes in more advanced math classes. We will use these findings to refine the bridge program’s approach to teaching students how to succeed at collegiate-level math classes and, ultimately, as STEM majors at Rice. 
    more » « less