skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins
Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on interactions with these networks remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyze genomes, epigenomes, and transcriptomes during early development in two sea urchin species in the genus Heliocidaris that exhibit highly divergent life histories and in an outgroup species. Signatures of positive selection and changes in chromatin status within putative gene regulatory elements are both enriched on the branch leading to the derived life history, and particularly so near core dGRN genes; in contrast, positive selection within protein-coding regions have at most a modest enrichment in branch and function. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near dGRN genes with conserved roles in cell fate specification. Experimentally perturbing the function of three key transcription factors reveals profound evolutionary changes in the earliest events that pattern the embryo, disrupting regulatory interactions previously conserved for ~225 million years. Together, these results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change and that even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.  more » « less
Award ID(s):
1929934
PAR ID:
10355847
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature ecology evolution
ISSN:
2397-334X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species. Positive selection and chromatin accessibility modifications within putative regulatory elements are enriched on the branch leading to the derived life history, particularly near dGRN genes. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near conserved cell fate specification genes. Experimentally perturbing key transcription factors reveals profound evolutionary changes to early embryonic patterning events, disrupting regulatory interactions previously conserved for ~225 million years. These results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change. More broadly, even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances. 
    more » « less
  2. Fernandez-Valverde, Selene (Ed.)
    Abstract Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a “natural experiment” in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of single-cell transcriptome analysis (scRNA-seq) developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states, respectively) reveal numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events and the primary signaling center are co-localized in the ancestral developmental gene regulatory network; remarkably, in H. erythrogramma, they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation. 
    more » « less
  3. Wittkopp, Patricia (Ed.)
    Abstract Chromatin configuration is highly dynamic during embryonic development in animals, exerting an important point of control in transcriptional regulation. Yet there exists remarkably little information about the role of evolutionary changes in chromatin configuration to the evolution of gene expression and organismal traits. Genome-wide assays of chromatin configuration, coupled with whole-genome alignments, can help address this gap in knowledge in several ways. In this study we present a comparative analysis of regulatory element sequences and accessibility throughout embryogenesis in three sea urchin species with divergent life histories: a lecithotroph Heliocidaris erythrogramma, a closely related planktotroph H. tuberculata, and a distantly related planktotroph Lytechinus variegatus. We identified distinct epigenetic and mutational signatures of evolutionary modifications to the function of putative cis-regulatory elements in H. erythrogramma that have accumulated nonuniformly throughout the genome, suggesting selection, rather than drift, underlies many modifications associated with the derived life history. Specifically, regulatory elements composing the sea urchin developmental gene regulatory network are enriched for signatures of positive selection and accessibility changes which may function to alter binding affinity and access of developmental transcription factors to these sites. Furthermore, regulatory element changes often correlate with divergent expression patterns of genes involved in cell type specification, morphogenesis, and development of other derived traits, suggesting these evolutionary modifications have been consequential for phenotypic evolution in H. erythrogramma. Collectively, our results demonstrate that selective pressures imposed by changes in developmental life history rapidly reshape the cis-regulatory landscape of core developmental genes to generate novel traits and embryonic programs. 
    more » « less
  4. Abstract The developmental gene regulatory networks (dGRNs) of two sea urchin species,Lytechinus variegatus (Lv)andStrongylocentrotus purpuratus (Sp),have remained remarkably similar despite about 50 million years since a common ancestor. Hundreds of parallel experimental perturbations of transcription factors with similar outcomes support this conclusion. A recent scRNA-seq analysis suggested that the earliest expression of several genes within the dGRNs differs betweenLvandSp. Here, we present a careful reanalysis of the dGRNs in these two species, paying close attention to timing of first expression. We find that initial expression of genes critical for cell fate specification occurs during several compressed time periods in both species. Previously unrecognized feedback circuits are inferred from the temporally corrected dGRNs. Although many of these feedbacks differ in location within the respective GRNs, the overall number is similar between species. We identify several prominent differences in timing of first expression for key developmental regulatory genes; comparison with a third species indicates that these heterochronies likely originated in an unbiased manner with respect to embryonic cell lineage and evolutionary branch. Together, these results suggest that interactions can evolve even within highly conserved dGRNs and that feedback circuits may buffer the effects of heterochronies in the expression of key regulatory genes. 
    more » « less
  5. Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans , a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts, and developmental gene expression, but not RNA editing or a ‘developmental hourglass,’ act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies. 
    more » « less