To improve our understanding of how the central nervous system functions in health and disease, we report the development of an integrated chip for studying the effects of the neurotransmitters dopamine and serotonin on adult rat hippocampal progenitor cell (AHPC) neurospheroids. This chip allows dopamine or serotonin located in one chamber to diffuse to AHPC neurospheroids cultured in an adjacent chamber through a built-in diffusion barrier created by an array of intentionally misaligned micropillars. The gaps among the micropillars are filled with porous poly(ethylene glycol) (PEG) gel to tune the permeability of the diffusion barrier. An electrochemical sensor is also integrated within the chamber where the neurospheroids can be cultured, thereby allowing monitoring of the concentrations of dopamine or serotonin. Experiments show that concentrations of the neurotransmitters inside the neurospheroid chamber can be increased over a period of several hours to over 10 days by controlling the compositions of the PEG gel inside the diffusion barrier. The AHPC neurospheroids cultured in the chip remain highly viable following dopamine or serotonin treatment. Cell proliferation and neuronal differentiation have also been observed following treatment, revealing that the AHPC neurospheroids are a valuable in vitro brain model for neurogenesis research. Finally, we show that by tuning the permeability of diffusion barrier, we can block transfer of Escherichia coli cells across the diffusion barrier, while allowing dopamine or serotonin to pass through. These results suggest the feasibility of using the chip to better understand the interactions between microbiota and brain via the gut–brain axis.
more »
« less
Passive Control of Silane Diffusion for Gradient Application of Surface Properties
Liquid lithography represents a robust technique for fabricating three-dimensional (3D) microstructures on a two-dimensional template. Silanization of a surface is often a key step in the liquid lithography process and is used to alter the surface energy of the substrate and, consequently, the shape of the 3D microfeatures produced. In this work, we present a passive technique that allows for the generation of silane gradients along the length of a substrate. The technique relies on a secondary diffusion chamber with a single opening, leading to a directional introduction of silane to the substrate via passive diffusion. The secondary chamber geometry influences the deposited gradient, which is shown to be well captured by Monte Carlo simulations that incorporate the passive diffusion and grafting processes. The technique ultimately allows the user to generate a range of substrate wettabilities on a single chip, enhancing throughput for organ-on-a-chip applications by mimicking the spatial variability of tissue topographies present in vivo.
more »
« less
- PAR ID:
- 10355872
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 12
- Issue:
- 11
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 1360
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rapid surface charge mapping of a solid surface remains a challenge. In this study, we present a novel microchip based on liquid crystals for assessing the surface charge distribution of a planar or soft surface. This chip enables rapid measurements of the local surface charge distribution of a charged surface. The chip consists of a micropillar array fabricated on a transparent indium tin oxide substrate, while the liquid crystal is used to fill in the gaps between the micropillar structures. When an object is placed on top of the chip, the local surface charge (or zeta potential) influences the orientation of the liquid crystal molecules, resulting in changes in the magnitude of transmitted light. By measuring the intensity of the transmitted light, the distribution of the surface charge can be accurately quantified. We calibrated the chip in a three-electrode configuration and demonstrated the validity of the chip for rapid surface charge mapping using a borosilicate glass slide. This chip offers noninvasive, rapid mapping of surface charges on charged surfaces, with no need for physical or chemical modifications, and has broad potential applications in biomedical research and advanced material design.more » « less
-
This paper presents a novel fabrication technique to create submicrometer-scale liquid metal (eutectic gallium-indium alloy, EGaIn) thin-film patterns for all-soft electronic devices. The proposed hybrid lithography process combines electron-beam lithography with soft lithography and enables high resolution and high density all-soft electronic passive components and microelectrode arrays. For the first time, submicrometer-scale EGaIn thin film patterning with feature sizes as small as 375 nm is demonstrated. Thanks to the intrinsic softness of EGaIn, the fabricated devices can endure mechanical strain >30%, while maintaining electrical functionality.more » « less
-
Abstract Polymeric particles with complex shapes are required for biomedical therapies, colloidal self‐assembly, and micro‐robotics. It has been challenging to synthesize particles beyond simple shapes (e.g., spheres, cubes) with high structural accuracy using existing methods. Here, a method for fabricating polymeric microparticles of complex 3D shapes is reported using two‐photon lithography, and dispersing the particles in an aqueous solution on a glass substrate. The fabrication of polyhedrons (e.g., tetrahedron, pyramid), polypods (e.g., tetrapod, hexapod), and other shapes of 5–10 µm in size is demonstrated. Confocal microscopy is used to track the motion of the sphere, tetrahedron, tetrapod, and screw‐shaped particles near the substrate, and determine their translational diffusion coefficients. HYDRO++ is used to simulate the motion of the particles far from the substrate. The influence of particle size and substrate effects on diffusion in the spherical particles is determined and finds that the non‐spherical particles have increased hindrance at the substrate compared to the spherical particles.more » « less
-
Abstract Direct transfer of pre-patterned device-grade nano-to-microscale materials highly benefits many existing and potential, high performance, heterogeneously integrated functional systems over conventional lithography-based microfabrication. We present, in combined theory and experiment, a self-delamination-driven pattern transfer of a single crystalline silicon thin membrane via well-controlled interfacial design in liquid media. This pattern transfer allows the usage of an intermediate or mediator substrate where both front and back sides of a thin membrane are capable of being integrated with standard lithographical processing, thereby achieving deterministic assembly of the thin membrane into a multi-functional system. Implementations of these capabilities are demonstrated in broad variety of applications ranging from electronics to microelectromechanical systems, wetting and filtration, and metamaterials.more » « less
An official website of the United States government

