skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CaveCrawler: an interactive analysis suite for cavefish bioinformatics
Abstract The growing use of genomics in diverse organisms provides the basis for identifying genomic and transcriptional differences across species and experimental conditions. Databases containing genomic and functional data have played critical roles in the development of numerous genetic models but most emerging models lack such databases. The Mexican tetra, Astyanax mexicanus exists as 2 morphs: surface-dwelling and cave-dwelling. There exist at least 30 cave populations, providing a system to study convergent evolution. We have generated a web-based analysis suite that integrates datasets from different studies to identify how gene transcription and genetic markers of selection differ between populations and across experimental contexts. Results of diverse studies can be analyzed in conjunction with other genetic data (e.g. Gene Ontology information), to enable biological inference from cross-study patterns and identify future avenues of research. Furthermore, the framework that we have built for A. mexicanus can be adapted for other emerging model systems.  more » « less
Award ID(s):
1923372
PAR ID:
10355891
Author(s) / Creator(s):
; ; ;
Editor(s):
Kern, A
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
12
Issue:
8
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26 . We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3 , in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species. 
    more » « less
  2. ABSTRACT The regulation of bone size is a poorly understood and complex developmental process. Evolutionary models can enable insight through interrogation of the developmental and molecular underpinnings of natural variation in bone size and shape. Here, we examine the Mexican tetra (Astyanax mexicanus), a species of teleost fish comprising of an extant river‐dwelling surface fish and obligate cave‐dwelling fish. These divergent morphs have evolved for thousands of years in drastically different habitats, which have led to diverse phenotypic differences. Among many craniofacial aberrations, cavefish harbor a wider gape, an underbite, and larger jaws compared to surface‐dwelling morphs. Morphotypes are inter‐fertile, allowing quantitative genetic analyses in F2pedigrees derived from surface × cavefish crosses. Here, we used quantitative trait locus (QTL) analysis to determine the genetic basis of jaw size. Strikingly, we discovered a single genomic region associated with several jaw size metrics. Future work identifying genetic lesions that explain differences in jaw development will provide new insight to the mechanisms driving bone size differences across vertebrate taxa. 
    more » « less
  3. Abstract A major goal of modern biology is connecting phenotype with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here, we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. These analyses revealed that QTL clusters in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics associated with increased opportunities for mutation, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb, which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific regions of the genome may play significant roles in driving adaptation to the cave environment in A. mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish. 
    more » « less
  4. Abstract Studying how different genotypes respond to environmental variation is essential to understand the genetic basis of adaptation. The Mexican tetra,Astyanax mexicanus, has cave and surface‐dwelling morphotypes that have adapted to entirely different environments in the wild, and are now successfully maintained in lab conditions. While this has enabled the identification of genetic adaptations underlying a variety of physiological processes, few studies have directly compared morphotypes between lab‐reared and natural populations. Such comparative approaches could help dissect the varying effects of environment and morphotype, and determine the extent to which phenomena observed in the lab are generalizable to conditions in the field. To this end, we take a transcriptomic approach to compare the Pachón cavefish and their surface fish counterparts in their natural habitats and the lab environment. We identify key changes in expression of genes implicated in metabolism and physiology between groups of fish, suggesting that morphotype (surface or cave) and environment (natural or lab) both alter gene expression. We find gene expression differences between cave and surface fish in their natural habitats are much larger than differences in expression between morphotypes in the lab environment. However, lab‐raised cave and surface fish still exhibit numerous gene expression changes, supporting genetically encoded changes in livers of this species. From this, we conclude that a controlled laboratory environment may serve as an ideal setting to study the genetic underpinnings of metabolic and physiological differences between the cavefish and surface fish. 
    more » « less
  5. Synopsis Reduction or complete loss of traits is a common occurrence throughout evolutionary history. In spite of this, numerous questions remain about why and how trait loss has occurred. Cave animals are an excellent system in which these questions can be answered, as multiple traits, including eyes and pigmentation, have been repeatedly reduced or lost across populations of cave species. This review focuses on how the blind Mexican cavefish, Astyanax mexicanus, has been used as a model system for examining the developmental, genetic, and evolutionary mechanisms that underlie eye regression in cave animals. We focus on multiple aspects of how eye regression evolved in A. mexicanus, including the developmental and genetic pathways that contribute to eye regression, the effects of the evolution of eye regression on other traits that have also evolved in A. mexicanus, and the evolutionary forces contributing to eye regression. We also discuss what is known about the repeated evolution of eye regression, both across populations of A. mexicanus cavefish and across cave animals more generally. Finally, we offer perspectives on how cavefish can be used in the future to further elucidate mechanisms underlying trait loss using tools and resources that have recently become available. 
    more » « less