skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Future Is Big—and Small: Remote Sensing Enables Cross-Scale Comparisons of Microbiome Dynamics and Ecological Consequences
ABSTRACT Coupling remote sensing with microbial omics-based approaches provides a promising new frontier for scientists to scale microbial interactions across space and time. These data-rich, interdisciplinary methods allow us to better understand interactions between microbial communities and their environments and, in turn, their impact on ecosystem structure and function. Here, we highlight current and novel examples of applying remote sensing, machine learning, spatial statistics, and omics data approaches to marine, aquatic, and terrestrial systems. We emphasize the importance of integrating biochemical and spatiotemporal environmental data to move toward a predictive framework of microbiome interactions and their ecosystem-level effects. Finally, we emphasize lessons learned from our collaborative research with recommendations to foster productive and interdisciplinary teamwork.  more » « less
Award ID(s):
1829992
PAR ID:
10355909
Author(s) / Creator(s):
; ; ;
Editor(s):
Wolfe, Benjamin E.
Date Published:
Journal Name:
mSystems
Volume:
6
Issue:
6
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Integration of remote sensing techniques and Environmental Science methodologies in place-based curriculum design creates unique learning opportunities. To promote introductory-level student engagement with STEM, our team designed a set of multidisciplinary teaching materials to intensely examine a single location: the Lake Sidney Lanier watershed of North Georgia, USA. Using a combination of scientific approaches from a variety of disciplines, course exercises encourage students to holistically learn about environmental conditions within the watershed. In addition, the learning materials require students to contemplate the process of knowledge-formation by considering the limitations and potential applications of different scientific approaches. Remote sensing exercises are embedded throughout the course content and include analysis of historic aerial imagery, Landsat-derived dynamic surface water extent, google timelapse land cover change, Sentinel 2 spectral bands, and evaluation of lidar-derived topography. Learning resources were intentionally designed to seamlessly integrate remote sensing approaches and traditional environmental science methods. Fundamental spatial concepts of scale and connectivity are considered using interdisciplinary approaches and local data. The environmental science theory of landscape ecology is presented alongside remote sensing concepts of spatial and temporal resolution. This allows students to think about the diverse ways scientists understand scale, pattern, and the definition of “place”. Multiple data sources are also provided for each topic. For example, remote sensing imagery is used to investigate surface water conditions during drought and high-rainfall time periods. In addition, USGS streamgage river discharge data and rainfall estimates are provided for students to examine drought history using multiple parameters. Lastly, sensor deployment and limitations of each data source are described so that students understand both the history of place as well as the process and development of science. Through the use of a place-based curriculum design and interdisciplinary lab exercises, students gain a holistic understanding of a regional watershed. 
    more » « less
  2. Multi-omics has the promise to provide a detailed molecular picture of biological systems. Although obtaining multi-omics data is relatively easy, methods that analyze such data have been lagging. In this paper, we present an algorithm that uses probabilistic graph representations and external knowledge to perform optimal structure learning and deduce a multifarious interaction network for multi-omics data from a bacterial community. Kefir grain, a microbial community that ferments milk and creates kefir, represents a self-renewing, stable, natural microbial community. Kefir has been shown to have a wide range of health benefits. We obtained a controlled bacterial community using the two most abundant and well-studied species in kefir grains: Lentilactobacillus kefiri and Lactobacillus kefiranofaciens. We applied growth temperatures of 30 °C and 37 °C and obtained transcriptomic, metabolomic, and proteomic data for the same 20 samples (10 samples per temperature). We obtained a multi-omics interaction network, which generated insights that would not have been possible with single-omics analysis. We identified interactions among transcripts, proteins, and metabolites, suggesting active toxin/antitoxin systems. We also observed multifarious interactions that involved the shikimate pathway. These observations helped explain bacterial adaptation to different stress conditions, co-aggregation, and increased activation of L. kefiranofaciens at 37 °C. 
    more » « less
  3. Measuring the growth rate of a microorganism is a simple yet profound way to quantify its effect on the world. The absolute growth rate of a microbial population reflects rates of resource assimilation, biomass production and element transformation—some of the many ways in which organisms affect Earth’s ecosystems and climate. Microbial fitness in the environment depends on the ability to reproduce quickly when conditions are favourable and adopt a survival physiology when conditions worsen, which cells coordinate by adjusting their relative growth rate. At the population level, relative growth rate is a sensitive metric of fitness, linking survival and reproduction to the ecology and evolution of populations. Techniques combining omics and stable isotope probing enable sensitive measurements of the growth rates of microbial assemblages and individual taxa in soil. Microbial ecologists can explore how the growth rates of taxa with known traits and evolutionary histories respond to changes in resource availability, environmental conditions and interactions with other organisms. We anticipate that quantitative and scalable data on the growth rates of soil microorganisms, coupled with measurements of biogeochemical fluxes, will allow scientists to test and refine ecological theory and advance process-based models of carbon flux, nutrient uptake and ecosystem productivity. Measurements of in situ microbial growth rates provide insights into the ecology of populations and can be used to quantitatively link microbial diversity to soil biogeochemistry. 
    more » « less
  4. Kussell, Edu; Takeuchi, Nobuto (Ed.)
    Microbial phototrophic communities dominated early Earth and thrive to this day, particularly in extreme environments. We focus on the impact of diel oscillations on phototrophic biofilms, especially in hot springs, where oxygenic phototrophs are keystone species that use light energy to fix carbon and often nitrogen. They exhibit photo-motility and stratification, and alter the physicochemical environment by driving O2, CO2, and pH oscillations. Omics analyses reveal extensive genomic and functional diversity in biofilms, but linking this to a predictive understanding of their structure and dynamics remains challenging. This can be addressed by better spatiotemporal resolution of microbial interactions, improved tools for building and manipulating synthetic communities, and integration of empirical and theoretical approaches. 
    more » « less
  5. The growth rate of a microorganism is a simple yet profound way to quantify its impact on the world. Microbial fitness in the environment depends on the ability to reproduce quickly when conditions are favorable and adopt a survival physiology when conditions worsen, which cells coordinate by adjusting their growth rate. At the population level, per capita growth rate is a sensitive metric of fitness, linking survival and reproduction to the ecology and evolution of populations. The absolute growth rate of a microbial population reflects rates of resource assimilation, biomass production, and element transformation, some of the many ways that organisms affect Earth’s ecosystems and climate. For soil microorganisms, most of our understanding of growth is based on observations made in culture. This is a crucial limitation given that many soil microbes are not readily cultured and in vitro conditions are unlikely to reflect conditions in the wild. New approaches in ‘omics and stable isotope probing make it possible to sensitively measure growth rates of microbial assemblages and individual taxa in nature, and to couple these measurements to biogeochemical fluxes. Microbial ecologists can now explore how the growth rates of taxa with known traits and evolutionary histories respond to changes in resource availability, environmental conditions, and interactions with other organisms. We anticipate that quantitative and scalable data on the growth rates of soil microorganisms will allow scientists to test and refine ecological theory and advance processbased models of carbon flux, nutrient uptake, and ecosystem productivity. Measurements of in situ microbial growth rates provide insights into the ecology of populations and can be used to quantitatively link microbial diversity to soil biogeochemistry.  
    more » « less