skip to main content

This content will become publicly available on July 1, 2023

Title: Pruning-as-Search: Efficient Neural Architecture Search via Channel Pruning and Structural Reparameterization
Neural architecture search (NAS) and network pruning are widely studied efficient AI techniques, but not yet perfect.NAS performs exhaustive candidate architecture search, incurring tremendous search cost.Though (structured) pruning can simply shrink model dimension, it remains unclear how to decide the per-layer sparsity automatically and optimally.In this work, we revisit the problem of layer-width optimization and propose Pruning-as-Search (PaS), an end-to-end channel pruning method to search out desired sub-network automatically and efficiently.Specifically, we add a depth-wise binary convolution to learn pruning policies directly through gradient descent.By combining the structural reparameterization and PaS, we successfully searched out a new family of VGG-like and lightweight networks, which enable the flexibility of arbitrary width with respect to each layer instead of each stage.Experimental results show that our proposed architecture outperforms prior arts by around 1.0% top-1 accuracy under similar inference speed on ImageNet-1000 classification task.Furthermore, we demonstrate the effectiveness of our width search on complex tasks including instance segmentation and image translation.Code and models are released.
Authors:
; ; ; ; ;
Award ID(s):
1937500
Publication Date:
NSF-PAR ID:
10356273
Journal Name:
Thirty-First International Joint Conference on Artificial Intelligence
Page Range or eLocation-ID:
3236 to 3242
Sponsoring Org:
National Science Foundation
More Like this
  1. Weight pruning is an effective model compression technique to tackle the challenges of achieving real-time deep neural network (DNN) inference on mobile devices. However, prior pruning schemes have limited application scenarios due to accuracy degradation, difficulty in leveraging hardware acceleration, and/or restriction on certain types of DNN layers. In this article, we propose a general, fine-grained structured pruning scheme and corresponding compiler optimizations that are applicable to any type of DNN layer while achieving high accuracy and hardware inference performance. With the flexibility of applying different pruning schemes to different layers enabled by our compiler optimizations, we further probe into the new problem of determining the best-suited pruning scheme considering the different acceleration and accuracy performance of various pruning schemes. Two pruning scheme mapping methods—one -search based and the other is rule based—are proposed to automatically derive the best-suited pruning regularity and block size for each layer of any given DNN. Experimental results demonstrate that our pruning scheme mapping methods, together with the general fine-grained structured pruning scheme, outperform the state-of-the-art DNN optimization framework with up to 2.48 \( \times \) and 1.73 \( \times \) DNN inference acceleration on CIFAR-10 and ImageNet datasets without accuracy loss.
  2. Deep convolutional neural network (DNN) has demonstrated phenomenal success and been widely used in many computer vision tasks. However, its enormous model size and high computing complexity prohibits its wide deployment into resource limited embedded system, such as FPGA and mGPU. As the two most widely adopted model compression techniques, weight pruning and quantization compress DNN model through introducing weight sparsity (i.e., forcing partial weights as zeros) and quantizing weights into limited bit-width values, respectively. Although there are works attempting to combine the weight pruning and quantization, we still observe disharmony between weight pruning and quantization, especially when more aggressive compression schemes (e.g., Structured pruning and low bit-width quantization) are used. In this work, taking FPGA as the test computing platform and Processing Elements (PE) as the basic parallel computing unit, we first propose a PE-wise structured pruning scheme, which introduces weight sparsification with considering of the architecture of PE. In addition, we integrate it with an optimized weight ternarization approach which quantizes weights into ternary values ({-1,0,+1}), thus converting the dominant convolution operations in DNN from multiplication-and-accumulation (MAC) to addition-only, as well as compressing the original model (from 32-bit floating point to 2-bit ternary representation) by at least 16more »times. Then, we investigate and solve the coexistence issue between PE-wise Structured pruning and ternarization, through proposing a Weight Penalty Clipping (WPC) technique with self-adapting threshold. Our experiment shows that the fusion of our proposed techniques can achieve the best state-of-the-art ∼21× PE-wise structured compression rate with merely 1.74%/0.94% (top-1/top-5) accuracy degradation of ResNet-18 on ImageNet dataset.« less
  3. Though recent years have witnessed remarkable progress in single image super-resolution (SISR) tasks with the prosperous development of deep neural networks (DNNs), the deep learning methods are confronted with the computation and memory consumption issues in practice, especially for resource-limited platforms such as mobile devices. To overcome the challenge and facilitate the real-time deployment of SISR tasks on mobile, we combine neural architecture search with pruning search and propose an automatic search framework that derives sparse super-resolution (SR) models with high image quality while satisfying the real-time inference requirement. To decrease the search cost, we leverage the weight sharing strategy by introducing a supernet and decouple the search problem into three stages, including supernet construction, compiler-aware architecture and pruning search, and compiler-aware pruning ratio search. With the proposed framework, we are the first to achieve real-time SR inference (with only tens of milliseconds per frame) for implementing 720p resolution with competitive image quality (in terms of PSNR and SSIM) on mobile platforms (Samsung Galaxy S20).
  4. Efficient machine learning implementations optimized for inference in hardware have wide-ranging benefits, depending on the application, from lower inference latency to higher data throughput and reduced energy consumption. Two popular techniques for reducing computation in neural networks are pruning, removing insignificant synapses, and quantization, reducing the precision of the calculations. In this work, we explore the interplay between pruning and quantization during the training of neural networks for ultra low latency applications targeting high energy physics use cases. Techniques developed for this study have potential applications across many other domains. We study various configurations of pruning during quantization-aware training, which we term quantization-aware pruning , and the effect of techniques like regularization, batch normalization, and different pruning schemes on performance, computational complexity, and information content metrics. We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task. Further, quantization-aware pruning typically performs similar to or better in terms of computational efficiency compared to other neural architecture search techniques like Bayesian optimization. Surprisingly, while networks with different training configurations can have similar performance for the benchmark application, the information content in the network can vary significantly, affecting its generalizability.
  5. The key challenge in photorealistic style transfer is that an algorithm should faithfully transfer the style of a reference photo to a content photo while the generated image should look like one captured by a camera. Although several photorealistic style transfer algorithms have been proposed, they need to rely on post- and/or pre-processing to make the generated images look photorealistic. If we disable the additional processing, these algorithms would fail to produce plausible photorealistic stylization in terms of detail preservation and photorealism. In this work, we propose an effective solution to these issues. Our method consists of a construction step (C-step) to build a photorealistic stylization network and a pruning step (P-step) for acceleration. In the C-step, we propose a dense auto-encoder named PhotoNet based on a carefully designed pre-analysis. PhotoNet integrates a feature aggregation module (BFA) and instance normalized skip links (INSL). To generate faithful stylization, we introduce multiple style transfer modules in the decoder and INSLs. PhotoNet significantly outperforms existing algorithms in terms of both efficiency and effectiveness. In the P-step, we adopt a neural architecture search method to accelerate PhotoNet. We propose an automatic network pruning framework in the manner of teacher-student learning for photorealistic stylization. Themore »network architecture named PhotoNAS resulted from the search achieves significant acceleration over PhotoNet while keeping the stylization effects almost intact. We conduct extensive experiments on both image and video transfer. The results show that our method can produce favorable results while achieving 20-30 times acceleration in comparison with the existing state-of-the-art approaches. It is worth noting that the proposed algorithm accomplishes better performance without any pre- or post-processing.« less