skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of Material Composition in Photothermal Actuation of DASABased Polymers
We investigate the influence of the host matrix on the photothermally driven actuation performance of negatively photochromic, donor−acceptor Stenhouse adduct (DASA)-based polymers. Using a modular Diels−Alder “click” platform, we designed polymeric materials with varying DASA incorporation and investigated the relationships between the material composition and the resulting physical, mechanical, and photoswitching properties. We demonstrate that increasing the DASA concentration in polymer conjugates has a dramatic effect on the material’s physical and mechanical properties, such as the glass transition temperature (Tg) and elastic modulus, as well as the photoswitching properties, which are found to be highly dependent on Tg. We establish using a simple photoresponsive bilayer that actuation performance is controlled by the bilayer stiffness rather than the photochrome incorporation of DASA. Finally, we report and compare the light-induced property changes in Tg and the elastic modulus between the materials comprising the open or closed forms of DASAs. Our results demonstrate the importance of designing a material that is stiff enough to provide the mechanical strength required for actuation under load, but soft enough to reversibly switch at the operational temperature and provide key considerations for the development of application-geared photoswitchable materials.  more » « less
Award ID(s):
1935327 1920299
PAR ID:
10356446
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACS applied polymer materials
Volume:
4
Issue:
1
ISSN:
2637-6105
Page Range / eLocation ID:
141-149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Adhesives require molecular contact, which is governed by roughness, modulus, and load. Here, we measured adhesion for stiff glassy polymer layers of varying thickness on top of a soft elastomer with rough substrates. We found that a 90-nm-thick PMMA layer on a softer elastic block was sufficient to drop macroscopic adhesion to almost zero during the loading cycle. This drop in adhesion for bilayers follows the modified Persson-Tosatti model, where the elastic energy for conformal contact depends on the thickness and modulus of the bilayer. In contrast, we observed no dependence on thickness of the PMMA layer on the work of adhesion calculated using the pull-off forces. Understanding how mechanical gradients (like bilayers) affect adhesion is critical for areas such as adhesion, friction, and colloidal and granular physics. Published by the American Physical Society2024 
    more » « less
  2. Understanding the mechanical properties of three-dimensional (3D)-printed ceramics while keeping the parts intact is crucial for advancing their application in high-performance and biocompatible fields, such as biomedical and aerospace engineering. This study uses non-destructive nanoindentation techniques to investigate the mechanical performance of 3D-printed zirconia across pre-conditioned and sintered states. Vat photopolymerization-based additive manufacturing (AM) was employed to fabricate zirconia samples. The structural and mechanical properties of the printed zirconia samples were explored, focusing on hardness and elastic modulus variations influenced by printing orientation and post-processing conditions. Nanoindentation data, analyzed using the Oliver and Pharr method, provided insights into the elastic and plastic responses of the material, showing the highest hardness and elastic modulus in the 0° print orientation. The microstructural analysis, conducted via scanning electron microscopy (SEM), illustrated notable changes in grain size and porosity, emphasizing the influencing of the printing orientation and thermal treatment on material properties. This research uniquely investigates zirconia’s mechanical evolution at the nanoscale across different processing stages—pre-conditioned and sintered—using nanoindentation. Unlike prior studies, which have focused on bulk mechanical properties post-sintering, this work elucidates how nano-mechanical behavior develops throughout additive manufacturing, bridging critical knowledge gaps in material performance optimization. 
    more » « less
  3. Abstract Manipulating a crystalline material's configurational entropy through the introduction of unique atomic species can produce novel materials with desirable mechanical and electrical properties. From a thermal transport perspective, large differences between elemental properties such as mass and interatomic force can reduce the rate at which phonons carry heat and thus reduce the thermal conductivity. Recent advances in materials synthesis are enabling the fabrication of entropy‐stabilized ceramics, opening the door for understanding the implications of extreme disorder on thermal transport. Measuring the structural, mechanical, and thermal properties of single‐crystal entropy‐stabilized oxides, it is shown that local ionic charge disorder can effectively reduce thermal conductivity without compromising mechanical stiffness. These materials demonstrate similar thermal conductivities to their amorphous counterparts, in agreement with the theoretical minimum limit, resulting in this class of material possessing the highest ratio of elastic modulus to thermal conductivity of any isotropic crystal. 
    more » « less
  4. Among soft materials, hydrogels with dynamic bonds that can be activated by a range of stimuli including temperature, pH, and infrared or ultraviolet light, constitute a special class of materials with unusual properties such as self-healing, actuation, and controlled degradation. Here, we take a hydrogel with reconfigurable disulfide crosslinks as an example and investigate its mechanical behavior. We demonstrate that this material has excellent fracture and fatigue resistance when the disulfide crosslinks are activated by ultraviolet illumination. We propose a simple constitutive model that describes the mechanical behavior of the material under a broad range of conditions. 
    more » « less
  5. Poly(lactic acid) (PLA) offers a renewable and degradable alternative to petroleum-based plastic, but its mechanical properties are not ideal for many applications. Herein, we describe the synthesis and polymerization of oxo-3,8-dioxabicyclo[3.2.1]octane (ODO), a bio-derived bicyclic lactone, and show that copolymers of L-lactide (LA) with small amounts of ODO have improved mechanical properties over PLA. Homopolymerization of ODO to poly(oxo-3,8-dioxabicyclo[3.2.1]octane) (PODO) is optimized for both solution-phase, organocatalytic and melt-phase, metal-catalyzed conditions. In comparison to the monocyclic analog, ε-caprolactone (CL), ODO has a lower enthalpy of polymerization and faster rate of polymerization. PODO is an amorphous, elastomeric polyester that has a 90 °C higher Tg than poly(ε-caprolactone) (PCL). Statistical copolymerization of LA with small fractions of ODO yields tough and transparent thermoplastics that have over 12× elongation at break compared to native PLA, while maintaining Tg, Young’s modulus (E), and yield strength. Together, these results describe how the incorporation of the tetrahydrofuran ring alters polymerizability and the thermomechanical properties of the homopolymer and copolymer materials. 
    more » « less