skip to main content


Title: Effects of a large-scale social media advertising campaign on holiday travel and COVID-19 infections: a cluster randomized controlled trial
Abstract During the Coronavirus Disease 2019 (COVID-19) epidemic, many health professionals used social media to promote preventative health behaviors. We conducted a randomized controlled trial of the effect of a Facebook advertising campaign consisting of short videos recorded by doctors and nurses to encourage users to stay at home for the Thanksgiving and Christmas holidays ( NCT04644328 and AEARCTR-0006821 ). We randomly assigned counties to high intensity ( n  = 410 (386) at Thanksgiving (Christmas)) or low intensity ( n  = 410 (381)). The intervention was delivered to a large fraction of Facebook subscribers in 75% and 25% of randomly assigned zip codes in high- and low-intensity counties, respectively. In total, 6,998 (6,716) zip codes were included, and 11,954,109 (23,302,290) users were reached at Thanksgiving (Christmas). The first two primary outcomes were holiday travel and fraction leaving home, both measured using mobile phone location data of Facebook users. Average distance traveled in high-intensity counties decreased by −0.993 percentage points (95% confidence interval (CI): –1.616, −0.371; P = 0.002) for the 3 days before each holiday compared to low-intensity counties. The fraction of people who left home on the holiday was not significantly affected (adjusted difference: 0.030; 95% CI: −0.361, 0.420; P = 0.881). The third primary outcome was COVID-19 infections recorded at the zip code level in the 2-week period starting 5 days after the holiday. Infections declined by 3.5% (adjusted 95% CI: −6.2%, −0.7%; P = 0.013) in intervention compared to control zip codes. Social media messages recorded by health professionals before the winter holidays in the United States led to a significant reduction in holiday travel and subsequent COVID-19 infections.  more » « less
Award ID(s):
2029880
NSF-PAR ID:
10356448
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Nature Medicine
Volume:
27
Issue:
9
ISSN:
1078-8956
Page Range / eLocation ID:
1622 to 1628
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020 for conducting spatial network analysis where nodes represent counties and edge weights are associated with the co-location probability of populations of the counties. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases across counties. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new confirmed cases with one week of delay. The analysis categorizes counties based on the number of confirmed COVID-19 cases and examines co-location patterns within and across groups. Significant segregation is found among different county groups. The results suggest that within-group co-location probabilities (e.g., co-location probabilities among counties with high numbers of cases) remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties. 
    more » « less
  2. The large population movement during the Spring Festival travel in China can considerably accelerate the spread of epidemics, especially after the relaxation of strict control measures against COVID-19. This study aims to assess the impact of population migration in Spring Festival holiday on epidemic spread under different scenarios. Using inter-city population movement data, we construct the population flow network during the non-holiday time as well as the Spring Festival holiday. We build a large-scale metapopulation model to simulate the epidemic spread among 371 Chinese cities. We analyze the impact of Spring Festival travel on the peak timing and peak magnitude nationally and in each city. Assuming an R0 (basic reproduction number) of 15 and the initial conditions as the reported COVID-19 infections on 17 December 2022, model simulations indicate that the Spring Festival travel can substantially increase the national peak magnitude of infection. The infection peaks arrive at most cities 1–4 days earlier as compared to those of the non-holiday time. While peak infections in certain large cities, such as Beijing and Shanghai, are decreased due to the massive migration of people to smaller cities during the pre-Spring Festival period, peak infections increase significantly in small- or medium-sized cities. For a less transmissible disease (R0 = 5), infection peaks in large cities are delayed until after the Spring Festival. Small- or medium-sized cities may experience a larger infection due to the large-scale population migration from metropolitan areas. The increased disease burden may impose considerable strain on the healthcare systems in these resource-limited areas. For a less transmissible disease, particular attention needs to be paid to outbreaks in large cities when people resume work after holidays. 
    more » « less
  3. null (Ed.)
    Background: A key challenge in estimating epidemiological parameters for a pandemic such as the initial COVID-19 outbreak in Wuhan is the discrepancy between the officially reported number of infections and the true number of infections. A common approach to tackling the challenge is to use the number of infections exported from the originating city to infer the true number. This approach can only provide a static estimate of the epidemiological parameters before city lockdown because there are almost no exported cases thereafter.Methods: We propose a Bayesian estimation method that dynamically estimates the epidemiological parameters by recovering true numbers of infections from day-to-day official numbers. To illustrate the use of this method, we provide a comprehensive retrospection on how the COVID-19 had progressed in Wuhan from January 19 to March 5, 2020. Particularly, we estimate that the outbreak sizes by January 23 and March 5 were 11,239 [95% CI 4,794–22,372] and 124,506 [95% CI 69,526–265,113], respectively.Results: The effective reproduction number attained its maximum on January 24 (3.42 [95% CI 3.34–3.50]) and became less than 1 from February 7 (0.76 [95% CI 0.65–0.92]). We also estimate the effects of two major government interventions on the spread of COVID-19 in Wuhan.Conclusions: This case study by our proposed method affirms the believed importance and effectiveness of imposing tight non-essential travel restrictions and affirm the importance and effectiveness of government interventions (e.g., transportation suspension and large scale hospitalization) for effective mitigation of COVID-19 community spread. 
    more » « less
  4. Importance

    The COVID-19 pandemic has been notable for the widespread dissemination of misinformation regarding the virus and appropriate treatment.

    Objective

    To quantify the prevalence of non–evidence-based treatment for COVID-19 in the US and the association between such treatment and endorsement of misinformation as well as lack of trust in physicians and scientists.

    Design, Setting, and Participants

    This single-wave, population-based, nonprobability internet survey study was conducted between December 22, 2022, and January 16, 2023, in US residents 18 years or older who reported prior COVID-19 infection.

    Main Outcome and Measure

    Self-reported use of ivermectin or hydroxychloroquine, endorsing false statements related to COVID-19 vaccination, self-reported trust in various institutions, conspiratorial thinking measured by the American Conspiracy Thinking Scale, and news sources.

    Results

    A total of 13 438 individuals (mean [SD] age, 42.7 [16.1] years; 9150 [68.1%] female and 4288 [31.9%] male) who reported prior COVID-19 infection were included in this study. In this cohort, 799 (5.9%) reported prior use of hydroxychloroquine (527 [3.9%]) or ivermectin (440 [3.3%]). In regression models including sociodemographic features as well as political affiliation, those who endorsed at least 1 item of COVID-19 vaccine misinformation were more likely to receive non–evidence-based medication (adjusted odds ratio [OR], 2.86; 95% CI, 2.28-3.58). Those reporting trust in physicians and hospitals (adjusted OR, 0.74; 95% CI, 0.56-0.98) and in scientists (adjusted OR, 0.63; 95% CI, 0.51-0.79) were less likely to receive non–evidence-based medication. Respondents reporting trust in social media (adjusted OR, 2.39; 95% CI, 2.00-2.87) and in Donald Trump (adjusted OR, 2.97; 95% CI, 2.34-3.78) were more likely to have taken non–evidence-based medication. Individuals with greater scores on the American Conspiracy Thinking Scale were more likely to have received non–evidence-based medications (unadjusted OR, 1.09; 95% CI, 1.06-1.11; adjusted OR, 1.10; 95% CI, 1.07-1.13).

    Conclusions and Relevance

    In this survey study of US adults, endorsement of misinformation about the COVID-19 pandemic, lack of trust in physicians or scientists, conspiracy-mindedness, and the nature of news sources were associated with receiving non–evidence-based treatment for COVID-19. These results suggest that the potential harms of misinformation may extend to the use of ineffective and potentially toxic treatments in addition to avoidance of health-promoting behaviors.

     
    more » « less
  5. Kainz, W. ; Manley, E. ; Delmelle, E. ; Birkin, M. ; Gahegan, M. ; Kwan, M-P. (Ed.)
    As of March 2021, the State of Florida, U.S.A. had accounted for approximately 6.67% of total COVID-19 (SARS-CoV-2 coronavirus disease) cases in the U.S. The main objective of this research is to analyze mobility patterns during a three month period in summer 2020, when COVID-19 case numbers were very high for three Florida counties, Miami-Dade, Broward, and Palm Beach counties. To investigate patterns, as well as drivers, related to changes in mobility across the tri-county region, a random forest regression model was built using sociodemographic, travel, and built environment factors, as well as COVID-19 positive case data. Mobility patterns declined in each county when new COVID-19 infections began to rise, beginning in mid-June 2020. While the mean number of bar and restaurant visits was lower overall due to closures, analysis showed that these visits remained a top factor that impacted mobility for all three counties, even with a rise in cases. Our modeling results suggest that there were mobility pattern differences between counties with respect to factors relating, for example, to race and ethnicity (different population groups factored differently in each county),as well as social distancing or travel-related factors (e.g., staying at home behaviors) over the two time periods prior to and after the spike of COVID-19 cases. 
    more » « less